cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386699 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n,k).

Original entry on oeis.org

1, 7, 69, 733, 8061, 90462, 1028871, 11814376, 136643085, 1589311381, 18569375114, 217773347502, 2561944357311, 30219704365104, 357278540928168, 4232449819704768, 50227362114232109, 596988743410929087, 7105534815529752831, 84678089652554263155, 1010268312800732117946
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(243/16)^n - Binomial[5*n, n]*(-1 + Hypergeometric2F1[1, -4*n, 1 + n, -1/2]), {n,0,25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(5*n, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(4*n)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 128*n*(2*n - 1)*(4*n - 3)*(4*n - 1)*(3052*n^4 - 15114*n^3 + 26432*n^2 - 18693*n + 4131)*a(n) = 8*(42807352*n^8 - 285737492*n^7 + 758983420*n^6 - 1002945218*n^5 + 644348866*n^4 - 111879380*n^3 - 84004497*n^2 + 44187381*n - 5806080)*a(n-1) - 1215*(5*n - 9)*(5*n - 8)*(5*n - 7)*(5*n - 6)*(3052*n^4 - 2906*n^3 - 598*n^2 + 1037*n - 192)*a(n-2).
a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi*n) * 2^(8*n + 1/2)). (End)
G.f.: g/((3-2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(5*n,k) * binomial(5*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^4*(15-8*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 17 2025

A386700 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n,k).

Original entry on oeis.org

1, 0, 6, 30, 186, 1140, 7116, 44856, 285066, 1823232, 11721726, 75683718, 490429224, 3187723344, 20774505408, 135699314640, 888177411018, 5823660624408, 38245666664994, 251528316024042, 1656338630258826, 10919849458481028, 72068276593960884, 476093333668519872
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-8/9)^n - Binomial[3*n, n]*(-1 + Hypergeometric2F1[1, -2*n, 1 + n, 1/3]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(3*n, k));

Formula

a(n) = [x^n] 1/((1+2*x) * (1-x)^(2*n)).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(2*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 18*n*(2*n - 1)*(55*n^2 - 175*n + 138)*a(n) = (11605*n^4 - 49410*n^3 + 74243*n^2 - 46014*n + 9720)*a(n-1) + 24*(3*n - 5)*(3*n - 4)*(55*n^2 - 65*n + 18)*a(n-2).
a(n) ~ 3^(3*n + 1/2) / (5 * sqrt(Pi*n) * 2^(2*n)). (End)
G.f.: g/((-2+3*g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(3*n,k) * binomial(3*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - 6*x*g^2*(-1+g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 17 2025

A386701 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(4*n,k).

Original entry on oeis.org

1, 1, 13, 103, 869, 7476, 65323, 577242, 5144949, 46167196, 416527828, 3774785983, 34336862435, 313330665532, 2866982877954, 26294890918308, 241665561294741, 2225104901535564, 20520648006149980, 189523353219338572, 1752680220372189364, 16227703263403842768
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-16/27)^n - Binomial[4*n, n]*(-1 + Hypergeometric2F1[1, -3*n, 1 + n, 1/3]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(4*n, k));

Formula

a(n) = [x^n] 1/((1+2*x) * (1-x)^(3*n)).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 81*n*(3*n - 2)*(3*n - 1)*(612*n^3 - 2838*n^2 + 4354*n - 2209)*a(n) = 24*(165240*n^6 - 1019628*n^5 + 2493432*n^4 - 3068178*n^3 + 1984652*n^2 - 632900*n + 76545)*a(n-1) + 128*(2*n - 3)*(4*n - 7)*(4*n - 5)*(612*n^3 - 1002*n^2 + 514*n - 81)*a(n-2).
a(n) ~ 2^(8*n - 1/2) / (sqrt(Pi*n) * 3^(3*n + 1/2)). (End)
G.f.: g/((-2+3*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(-8+9*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025
Showing 1-3 of 3 results.