cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A385632 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 8, 81, 872, 9669, 109128, 1246419, 14359304, 166512285, 1940885504, 22717923586, 266833238328, 3143237113479, 37119019790016, 439290932937672, 5208668386199112, 61861932606093901, 735804601177846968, 8763478151940329859, 104498114621004830160, 1247410783999193335434
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(5*n+1, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(4*n+1)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+k,k).
a(n) = 3^(5*n+1)*2^(-4*n-1) - binomial(5*n+1, n)*(hypergeom([1, -1-4*n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((3-2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 14 2025
From Seiichi Manyama, Aug 16 2025: (Start)
G.f.: 1/(1 - x*g^3*(15-7*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 2*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)

A371739 a(n) = Sum_{k=0..n} binomial(5*n,k).

Original entry on oeis.org

1, 6, 56, 576, 6196, 68406, 768212, 8731848, 100146724, 1156626990, 13432735556, 156713948672, 1835237017324, 21560768699762, 253994850228896, 2999267652451776, 35490014668470052, 420718526924212654, 4995548847105422048, 59402743684137281920
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[32^n - Binomial[5*n, 1+n] * Hypergeometric2F1[1, 1 - 4*n, 2+n, -1], {n, 0, 20}] (* Vaclav Kotesovec, Apr 05 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(5*n, k));

Formula

a(n) = [x^n] 1/((1-2*x) * (1-x)^(4*n)).
a(n) ~ 5^(5*n + 1/2) / (3*sqrt(Pi*n) * 2^(8*n - 1/2)). - Vaclav Kotesovec, Apr 05 2024
a(n) = Sum_{k=0..floor(n/2)} binomial(5*n+1,n-2*k). - Seiichi Manyama, Apr 09 2024
a(n) = binomial(1+5*n, n)*hypergeom([1, (1-n)/2, -n/2], [1+2*n, 3/2+2*n], 1). - Stefano Spezia, Apr 09 2024
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+k-1,k). - Seiichi Manyama, Jul 30 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n,k) * binomial(5*n-k-1,n-k). - Seiichi Manyama, Aug 08 2025
G.f.: g/((2-g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 12 2025
G.f.: 1/(1 - x*g^4*(10-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 17 2025

A385498 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n,k).

Original entry on oeis.org

1, 6, 48, 408, 3564, 31626, 283548, 2560872, 23255964, 212101176, 1941110628, 17815257048, 163896843300, 1510891524252, 13952756564424, 129048895061208, 1195191116753436, 11082661017288264, 102877353868090080, 955912961224763232, 8889969049985302464
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(81/8)^n - Binomial[4*n, n]*(-1 + Hypergeometric2F1[1, -3*n, 1 + n, -1/2]), {n,0,25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(3*n)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(3*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 24*n*(3*n - 2)*(3*n - 1)*(139*n^3 - 366*n^2 + 143*n + 132)*a(n) = (588665*n^6 - 2281011*n^5 + 2262209*n^4 + 1245939*n^3 - 3359986*n^2 + 1877400*n - 322560)*a(n-1) - 648*(2*n - 3)*(4*n - 7)*(4*n - 5)*(139*n^3 + 51*n^2 - 172*n + 48)*a(n-2).
a(n) ~ 2^(8*n + 1/2) / (sqrt(Pi*n) * 3^(3*n - 1/2)). (End)
G.f.: g/((3-2*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(12-6*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025

A385004 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n,k).

Original entry on oeis.org

1, 5, 31, 200, 1311, 8665, 57556, 383556, 2561871, 17140007, 114819351, 769925568, 5166845124, 34696155564, 233113911208, 1566926561740, 10536427052463, 70872688450083, 476854924775869, 3209222876463192, 21602639249766951, 145444151677134153, 979397744169608784
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(27/4)^n - Binomial[3*n, n] * (-1 + Hypergeometric2F1[1, -2*n, 1 + n, -1/2]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(3*n, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(2*n)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(2*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 8*n*(2*n - 1)*(15*n - 23)*a(n) = 6*(540*n^3 - 1503*n^2 + 1239*n - 320)*a(n-1) - 81*(3*n - 5)*(3*n - 4)*(15*n - 8)*a(n-2).
a(n) ~ 3^(3*n) / 2^(2*n+1) * (1 + 5/(3*sqrt(3*Pi*n))). (End)
G.f.: g/(3-2*g)^2 where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(3*n,k) * binomial(3*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(9-4*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 17 2025

A386702 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(5*n,k).

Original entry on oeis.org

1, 2, 24, 248, 2676, 29562, 331956, 3771896, 43242660, 499215146, 5795429764, 67587697872, 791232339756, 9292673328174, 109440405341088, 1291977861163968, 15284200451058724, 181147979395807002, 2150493166839159936, 25567085678133719880, 304368033788893315896
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-32/81)^n - Binomial[5*n, n]*(-1 + Hypergeometric2F1[1, -4*n, 1 + n, 1/3]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(5*n, k));

Formula

a(n) = [x^n] 1/((1+2*x) * (1-x)^(4*n)).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(4*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 648*n*(2*n - 1)*(4*n - 3)*(4*n - 1)*(37331*n^4 - 227972*n^3 + 518701*n^2 - 521044*n + 194928)*a(n) = (9143593823*n^8 - 74277961298*n^7 + 253684378280*n^6 - 473415527402*n^5 + 524935655069*n^4 - 351762123620*n^3 + 137998180332*n^2 - 28677229776*n + 2380855680)*a(n-1) + 160*(5*n - 9)*(5*n - 8)*(5*n - 7)*(5*n - 6)*(37331*n^4 - 78648*n^3 + 58771*n^2 - 18234*n + 1944)*a(n-2).
a(n) ~ 5^(5*n + 1/2) / (7 * sqrt(Pi*n) * 2^(8*n - 1/2)). (End)
G.f.: g/((-2+3*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(5*n,k) * binomial(5*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^4*(-10+12*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 17 2025
Showing 1-5 of 5 results.