A385632
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n+1,k).
Original entry on oeis.org
1, 8, 81, 872, 9669, 109128, 1246419, 14359304, 166512285, 1940885504, 22717923586, 266833238328, 3143237113479, 37119019790016, 439290932937672, 5208668386199112, 61861932606093901, 735804601177846968, 8763478151940329859, 104498114621004830160, 1247410783999193335434
Offset: 0
A371739
a(n) = Sum_{k=0..n} binomial(5*n,k).
Original entry on oeis.org
1, 6, 56, 576, 6196, 68406, 768212, 8731848, 100146724, 1156626990, 13432735556, 156713948672, 1835237017324, 21560768699762, 253994850228896, 2999267652451776, 35490014668470052, 420718526924212654, 4995548847105422048, 59402743684137281920
Offset: 0
-
Table[32^n - Binomial[5*n, 1+n] * Hypergeometric2F1[1, 1 - 4*n, 2+n, -1], {n, 0, 20}] (* Vaclav Kotesovec, Apr 05 2024 *)
-
a(n) = sum(k=0, n, binomial(5*n, k));
A385498
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n,k).
Original entry on oeis.org
1, 6, 48, 408, 3564, 31626, 283548, 2560872, 23255964, 212101176, 1941110628, 17815257048, 163896843300, 1510891524252, 13952756564424, 129048895061208, 1195191116753436, 11082661017288264, 102877353868090080, 955912961224763232, 8889969049985302464
Offset: 0
-
Table[(81/8)^n - Binomial[4*n, n]*(-1 + Hypergeometric2F1[1, -3*n, 1 + n, -1/2]), {n,0,25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n, k));
A385004
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n,k).
Original entry on oeis.org
1, 5, 31, 200, 1311, 8665, 57556, 383556, 2561871, 17140007, 114819351, 769925568, 5166845124, 34696155564, 233113911208, 1566926561740, 10536427052463, 70872688450083, 476854924775869, 3209222876463192, 21602639249766951, 145444151677134153, 979397744169608784
Offset: 0
-
Table[(27/4)^n - Binomial[3*n, n] * (-1 + Hypergeometric2F1[1, -2*n, 1 + n, -1/2]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(3*n, k));
A386702
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(5*n,k).
Original entry on oeis.org
1, 2, 24, 248, 2676, 29562, 331956, 3771896, 43242660, 499215146, 5795429764, 67587697872, 791232339756, 9292673328174, 109440405341088, 1291977861163968, 15284200451058724, 181147979395807002, 2150493166839159936, 25567085678133719880, 304368033788893315896
Offset: 0
-
Table[(-32/81)^n - Binomial[5*n, n]*(-1 + Hypergeometric2F1[1, -4*n, 1 + n, 1/3]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, (-3)^(n-k)*binomial(5*n, k));
Showing 1-5 of 5 results.