A066381
a(n) = Sum_{k=0..n} binomial(4*n,k).
Original entry on oeis.org
1, 5, 37, 299, 2517, 21700, 190051, 1683218, 15033173, 135142796, 1221246132, 11083374659, 100946732307, 922205369324, 8446802334994, 77542088287444, 713250450657109, 6572130378649468, 60652194138406780, 560522209086365852
Offset: 0
-
ogf := eval(s/((s-2)*(3*s-4)), s = RootOf(1-s+x*s^4, s));
series(ogf, x=0, 25); # Mark van Hoeij, May 05 2013
-
Table[Sum[Binomial[4*n,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 03 2015 *)
-
a[0]:1$ a[1]:5$ a[n]:=8*((3784*n^6-18764*n^5+34432*n^4 -28138*n^3+9028*n^2-24*n-315)*a[n-1]+16*(3-2*n)*(4*n-5)*(4*n-7)*(44*n^3-34*n^2-2*n+3)*a[n-2])/(3*n*(3*n-1)*(3*n-2)*(44*n^3-166*n^2 +198*n-73))$ makelist(a[n],n,0,1000); /* Tani Akinari, Sep 02 2014 */
-
{ for (n=0, 150, a=0; for (k=0, n, a+=binomial(4*n, k)); write("b066381.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 12 2010
A066380
a(n) = Sum_{k=0..n} binomial(3*n,k).
Original entry on oeis.org
1, 4, 22, 130, 794, 4944, 31180, 198440, 1271626, 8192524, 53009102, 344212906, 2241812648, 14637774688, 95786202688, 628002401520, 4124304597834, 27126202533252, 178651732923346, 1178005033926998, 7776048412324714
Offset: 0
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 425.
-
A066380:=n->add(binomial(3*n,k), k=0..n): seq(A066380(n), n=0..20); # Wesley Ivan Hurt, Sep 18 2014
-
Table[Sum[Binomial[3 n, k], {k, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, May 27 2013 *)
a[n_] := 8^n - (2*n)/(n+1)*Binomial[3*n, n]*Hypergeometric2F1[1, -2*n+1, n+2, -1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 02 2013 *)
-
a[0]:1$ a[n]:=8*a[n-1]-(5*n^2+n-2)*(3*n-3)!/((2*n-1)!*n!)$ makelist(a[n],n,0,200); /* Tani Akinari, Sep 02 2014 */
-
{ for (n=0, 150, a=0; for (k=0, n, a+=binomial(3*n, k)); write("b066380.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 12 2010
A386812
a(n) = Sum_{k=0..n} binomial(5*n+1,k).
Original entry on oeis.org
1, 7, 67, 697, 7547, 83682, 942649, 10739176, 123388763, 1427090845, 16593192942, 193774331494, 2271115189673, 26700463884244, 314735943548632, 3718522618187472, 44021808206431579, 522080025971331983, 6201449551502245321, 73767447652621434695, 878599223738760686422
Offset: 0
-
[&+[Binomial(5*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
-
Table[Sum[Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 21 2025 *)
-
a(n) = sum(k=0, n, binomial(5*n+1, k));
A386699
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n,k).
Original entry on oeis.org
1, 7, 69, 733, 8061, 90462, 1028871, 11814376, 136643085, 1589311381, 18569375114, 217773347502, 2561944357311, 30219704365104, 357278540928168, 4232449819704768, 50227362114232109, 596988743410929087, 7105534815529752831, 84678089652554263155, 1010268312800732117946
Offset: 0
-
Table[(243/16)^n - Binomial[5*n, n]*(-1 + Hypergeometric2F1[1, -4*n, 1 + n, -1/2]), {n,0,25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(5*n, k));
A371780
a(n) = Sum_{k=0..floor(n/3)} binomial(5*n+2,n-3*k).
Original entry on oeis.org
1, 7, 66, 681, 7337, 81081, 911153, 10361554, 118881714, 1373402934, 15954079557, 186165866937, 2180501226751, 25620628577083, 301858589475117, 3564841627421691, 42186363329210473, 500142626996777355, 5939062937833796486, 70626949319708756435
Offset: 0
-
f:= proc(n) local k; add(binomial(5*n+2,n-3*k),k=0..n/3); end proc:
map(f, [$0..100]); # Robert Israel, Apr 22 2024
-
a(n) = sum(k=0, n\3, binomial(5*n+2, n-3*k));
A386702
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(5*n,k).
Original entry on oeis.org
1, 2, 24, 248, 2676, 29562, 331956, 3771896, 43242660, 499215146, 5795429764, 67587697872, 791232339756, 9292673328174, 109440405341088, 1291977861163968, 15284200451058724, 181147979395807002, 2150493166839159936, 25567085678133719880, 304368033788893315896
Offset: 0
-
Table[(-32/81)^n - Binomial[5*n, n]*(-1 + Hypergeometric2F1[1, -4*n, 1 + n, 1/3]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, (-3)^(n-k)*binomial(5*n, k));
Showing 1-6 of 6 results.