A386811
a(n) = Sum_{k=0..n} binomial(4*n+1,k).
Original entry on oeis.org
1, 6, 46, 378, 3214, 27896, 245506, 2182396, 19548046, 176142312, 1594831736, 14497410186, 132224930146, 1209397179048, 11088872706188, 101890087382168, 937973964234638, 8649109175873288, 79872298511230120, 738583466508887304, 6837944227813170424
Offset: 0
-
[&+[Binomial(4*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
-
Table[Sum[Binomial[4*n+1,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n+1, k));
A066380
a(n) = Sum_{k=0..n} binomial(3*n,k).
Original entry on oeis.org
1, 4, 22, 130, 794, 4944, 31180, 198440, 1271626, 8192524, 53009102, 344212906, 2241812648, 14637774688, 95786202688, 628002401520, 4124304597834, 27126202533252, 178651732923346, 1178005033926998, 7776048412324714
Offset: 0
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 425.
-
A066380:=n->add(binomial(3*n,k), k=0..n): seq(A066380(n), n=0..20); # Wesley Ivan Hurt, Sep 18 2014
-
Table[Sum[Binomial[3 n, k], {k, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, May 27 2013 *)
a[n_] := 8^n - (2*n)/(n+1)*Binomial[3*n, n]*Hypergeometric2F1[1, -2*n+1, n+2, -1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 02 2013 *)
-
a[0]:1$ a[n]:=8*a[n-1]-(5*n^2+n-2)*(3*n-3)!/((2*n-1)!*n!)$ makelist(a[n],n,0,200); /* Tani Akinari, Sep 02 2014 */
-
{ for (n=0, 150, a=0; for (k=0, n, a+=binomial(3*n, k)); write("b066380.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 12 2010
A387009
a(n) = Sum_{k=0..n} binomial(4*n+2,k).
Original entry on oeis.org
1, 7, 56, 470, 4048, 35443, 313912, 2804012, 25211936, 227881004, 2068564064, 18844224462, 172186125456, 1577401391626, 14483100716176, 133240186921816, 1227901991526976, 11333497984085620, 104752914242685856, 969417048912326008, 8981452266787224128
Offset: 0
-
[&+[Binomial(4*n+2, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 16 2025
-
Table[Sum[Binomial[4*n+2,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 16 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n+2, k));
A387010
a(n) = Sum_{k=0..n} binomial(4*n+3,k).
Original entry on oeis.org
1, 8, 67, 576, 5036, 44552, 397594, 3572224, 32267668, 292750368, 2665685155, 24347665728, 222972599812, 2046626681072, 18823260696452, 173427623923712, 1600383346290116, 14789063407109600, 136838247669241276, 1267571539176770816, 11754134090271100336
Offset: 0
-
[&+[Binomial(4*n+3, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 16 2025
-
Table[Sum[Binomial[4*n+3,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 16 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n+3, k));
A387011
a(n) = Sum_{k=0..n} binomial(4*n+4,k).
Original entry on oeis.org
1, 9, 79, 697, 6196, 55455, 499178, 4514873, 40999516, 373585604, 3414035527, 31278197839, 287191809724, 2642070371194, 24347999094724, 224723513577529, 2076978797223820, 19220104372823340, 178061257422521452, 1651314042800498052, 15328459501269535952
Offset: 0
-
[&+[Binomial(4*n+4, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 16 2025
-
Table[Sum[Binomial[4*n+4,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 16 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n+4, k));
A371739
a(n) = Sum_{k=0..n} binomial(5*n,k).
Original entry on oeis.org
1, 6, 56, 576, 6196, 68406, 768212, 8731848, 100146724, 1156626990, 13432735556, 156713948672, 1835237017324, 21560768699762, 253994850228896, 2999267652451776, 35490014668470052, 420718526924212654, 4995548847105422048, 59402743684137281920
Offset: 0
-
Table[32^n - Binomial[5*n, 1+n] * Hypergeometric2F1[1, 1 - 4*n, 2+n, -1], {n, 0, 20}] (* Vaclav Kotesovec, Apr 05 2024 *)
-
a(n) = sum(k=0, n, binomial(5*n, k));
A385498
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n,k).
Original entry on oeis.org
1, 6, 48, 408, 3564, 31626, 283548, 2560872, 23255964, 212101176, 1941110628, 17815257048, 163896843300, 1510891524252, 13952756564424, 129048895061208, 1195191116753436, 11082661017288264, 102877353868090080, 955912961224763232, 8889969049985302464
Offset: 0
-
Table[(81/8)^n - Binomial[4*n, n]*(-1 + Hypergeometric2F1[1, -3*n, 1 + n, -1/2]), {n,0,25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n, k));
A386701
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(4*n,k).
Original entry on oeis.org
1, 1, 13, 103, 869, 7476, 65323, 577242, 5144949, 46167196, 416527828, 3774785983, 34336862435, 313330665532, 2866982877954, 26294890918308, 241665561294741, 2225104901535564, 20520648006149980, 189523353219338572, 1752680220372189364, 16227703263403842768
Offset: 0
-
Table[(-16/27)^n - Binomial[4*n, n]*(-1 + Hypergeometric2F1[1, -3*n, 1 + n, 1/3]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, (-3)^(n-k)*binomial(4*n, k));
A387037
a(n) = Sum_{k=0..n} binomial(4*n-1,k).
Original entry on oeis.org
1, 4, 29, 232, 1941, 16664, 145499, 1285624, 11460949, 102875128, 928495764, 8417689504, 76599066579, 699232769512, 6400175653922, 58718827590992, 539822826733397, 4971747032359352, 45863130731297180, 423683961417124576, 3919058645835901556
Offset: 0
-
[&+[Binomial(4*n-1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
-
Table[Sum[Binomial[4*n-1,k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
-
a(n) = sum(k=0, n, binomial(4*n-1, k));
A371779
a(n) = Sum_{k=0..floor(n/3)} binomial(4*n+2,n-3*k).
Original entry on oeis.org
1, 6, 45, 365, 3078, 26565, 232831, 2063235, 18435021, 165780758, 1498533273, 13603087800, 123920995101, 1132284232215, 10372554403620, 95233251146671, 876081280823430, 8073359613286509, 74513645742072841, 688682977876117698, 6373025238727622277
Offset: 0
Showing 1-10 of 18 results.