A066381
a(n) = Sum_{k=0..n} binomial(4*n,k).
Original entry on oeis.org
1, 5, 37, 299, 2517, 21700, 190051, 1683218, 15033173, 135142796, 1221246132, 11083374659, 100946732307, 922205369324, 8446802334994, 77542088287444, 713250450657109, 6572130378649468, 60652194138406780, 560522209086365852
Offset: 0
-
ogf := eval(s/((s-2)*(3*s-4)), s = RootOf(1-s+x*s^4, s));
series(ogf, x=0, 25); # Mark van Hoeij, May 05 2013
-
Table[Sum[Binomial[4*n,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 03 2015 *)
-
a[0]:1$ a[1]:5$ a[n]:=8*((3784*n^6-18764*n^5+34432*n^4 -28138*n^3+9028*n^2-24*n-315)*a[n-1]+16*(3-2*n)*(4*n-5)*(4*n-7)*(44*n^3-34*n^2-2*n+3)*a[n-2])/(3*n*(3*n-1)*(3*n-2)*(44*n^3-166*n^2 +198*n-73))$ makelist(a[n],n,0,1000); /* Tani Akinari, Sep 02 2014 */
-
{ for (n=0, 150, a=0; for (k=0, n, a+=binomial(4*n, k)); write("b066381.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 12 2010
Original entry on oeis.org
1, 4, 19, 98, 531, 2974, 17060, 99658, 590563, 3540464, 21430267, 130771376, 803538100, 4967127736, 30866224824, 192696614730, 1207967820099, 7600482116932, 47981452358201, 303820299643138, 1929099000980219, 12279621792772822, 78346444891033856
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- J.-P. Bultel and S. Giraudo, Combinatorial Hopf algebras from PROs, arXiv preprint arXiv:1406.6903 [math.CO], 2014-2016.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Noga Alon and Noah Kravitz, Counting Dope Matrices, arXiv:2205.09302 [math.CO], 2022.
-
f := n -> binomial(3*n, n) - (1/2)*add(binomial(3*n, k), k=0..n):
seq(f(n), n=1..20);
-
Table[Binomial[3 n, n] - Sum[Binomial[3 n, k], {k, 0, n}]/2, {n, 20}] (* Wesley Ivan Hurt, Jun 13 2014 *)
-
{a(n)=local(A=1+x); A=x*exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, j))*x^m/m +x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Sep 04 2012
A371739
a(n) = Sum_{k=0..n} binomial(5*n,k).
Original entry on oeis.org
1, 6, 56, 576, 6196, 68406, 768212, 8731848, 100146724, 1156626990, 13432735556, 156713948672, 1835237017324, 21560768699762, 253994850228896, 2999267652451776, 35490014668470052, 420718526924212654, 4995548847105422048, 59402743684137281920
Offset: 0
-
Table[32^n - Binomial[5*n, 1+n] * Hypergeometric2F1[1, 1 - 4*n, 2+n, -1], {n, 0, 20}] (* Vaclav Kotesovec, Apr 05 2024 *)
-
a(n) = sum(k=0, n, binomial(5*n, k));
A387007
a(n) = Sum_{k=0..n} binomial(3*n+2,k).
Original entry on oeis.org
1, 6, 37, 232, 1471, 9402, 60460, 390656, 2533987, 16489546, 107594213, 703680424, 4611412196, 30273024984, 199045392232, 1310535994368, 8639411571051, 57017083602138, 376674527189599, 2490742704227192, 16483857933928471, 109175823528400778, 723611538997758784
Offset: 0
-
[&+[Binomial(3*n+2,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
-
Table[Sum[Binomial[3*n+2,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
-
a(n) = sum(k=0, n, binomial(3*n+2, k));
A387008
a(n) = Sum_{k=0..n} binomial(3*n+3,k).
Original entry on oeis.org
1, 7, 46, 299, 1941, 12616, 82160, 536155, 3505699, 22964087, 150676186, 990134948, 6515349244, 42925973608, 283134975936, 1869455684187, 12355133446527, 81725384344741, 541021064605298, 3584203906519219, 23761237400402597, 157623924396214756, 1046244086051121248
Offset: 0
-
[&+[Binomial(3*n+3,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
-
Table[Sum[Binomial[3*n+3,k], {k,0,n}], {n,0,25}] (* Vaclav Kotesovec, Aug 20 2025 *)
-
a(n) = sum(k=0, n, binomial(3*n+3, k));
A371742
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-k,n-2*k).
Original entry on oeis.org
1, 3, 16, 92, 551, 3380, 21065, 132771, 843944, 5399802, 34731776, 224361283, 1454557294, 9458829681, 61670895633, 403003997300, 2638776935215, 17308508054848, 113709379928689, 748069400432262, 4927608724973776, 32495826854732633, 214521754579553129
Offset: 0
A371754
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-2*k,n-3*k).
Original entry on oeis.org
1, 3, 15, 85, 505, 3081, 19125, 120173, 761995, 4865697, 31244029, 201544551, 1305039209, 8477521051, 55221311565, 360559717807, 2359123470971, 15463951609491, 101530816122729, 667587477393509, 4395294402200983, 28972295880583861, 191181607835416543
Offset: 0
-
Table[Sum[Binomial[3n-2k,n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, Oct 19 2024 *)
-
a(n) = sum(k=0, n\3, binomial(3*n-2*k, n-3*k));
A385004
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n,k).
Original entry on oeis.org
1, 5, 31, 200, 1311, 8665, 57556, 383556, 2561871, 17140007, 114819351, 769925568, 5166845124, 34696155564, 233113911208, 1566926561740, 10536427052463, 70872688450083, 476854924775869, 3209222876463192, 21602639249766951, 145444151677134153, 979397744169608784
Offset: 0
-
Table[(27/4)^n - Binomial[3*n, n] * (-1 + Hypergeometric2F1[1, -2*n, 1 + n, -1/2]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(3*n, k));
A386700
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n,k).
Original entry on oeis.org
1, 0, 6, 30, 186, 1140, 7116, 44856, 285066, 1823232, 11721726, 75683718, 490429224, 3187723344, 20774505408, 135699314640, 888177411018, 5823660624408, 38245666664994, 251528316024042, 1656338630258826, 10919849458481028, 72068276593960884, 476093333668519872
Offset: 0
-
Table[(-8/9)^n - Binomial[3*n, n]*(-1 + Hypergeometric2F1[1, -2*n, 1 + n, 1/3]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, (-3)^(n-k)*binomial(3*n, k));
A387033
a(n) = Sum_{k=0..n} binomial(3*n-1,k).
Original entry on oeis.org
1, 3, 16, 93, 562, 3473, 21778, 137980, 880970, 5658537, 36519556, 236618693, 1538132224, 10026362492, 65513177704, 428957009288, 2813768603466, 18486790962201, 121634649321208, 801330506737399, 5285305708097522, 34896814868837161, 230631268849574378
Offset: 0
-
[&+[Binomial(3*n-1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
-
Table[Sum[Binomial[3*n-1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
-
a(n) = sum(k=0, n, binomial(3*n-1, k));
Showing 1-10 of 14 results.
Comments