cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A386811 a(n) = Sum_{k=0..n} binomial(4*n+1,k).

Original entry on oeis.org

1, 6, 46, 378, 3214, 27896, 245506, 2182396, 19548046, 176142312, 1594831736, 14497410186, 132224930146, 1209397179048, 11088872706188, 101890087382168, 937973964234638, 8649109175873288, 79872298511230120, 738583466508887304, 6837944227813170424
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(4*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
  • Mathematica
    Table[Sum[Binomial[4*n+1,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n+1, k));
    

Formula

a(n) = [x^n] 1/((1-2*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n+k,k).
D-finite with recurrence +645*n*(3*n-1)*(3*n-2)*a(n) +8*(-56722*n^3+213090*n^2-305978*n+150255)*a(n-1) +128*(62908*n^3-282348*n^2+385070*n-126735)*a(n-2) +12288*(-2486*n^3+8918*n^2+758*n-18935)*a(n-3) -2949120*(2*n-7)*(4*n-13)*(4*n-11)*a(n-4)=0. - R. J. Mathar, Aug 03 2025
a(n) = 2^(4*n+1) - binomial(4*n+1, n)*(hypergeom([1, -1-3*n], [1+n], -1) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 07 2025
a(n) ~ 2^(8*n + 3/2) / (sqrt(Pi*n) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Aug 07 2025
G.f.: g^2/((2-g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/2), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(8-2*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 16 2025

A079678 a(n) = a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) for m=5.

Original entry on oeis.org

1, 10, 115, 1360, 16265, 195660, 2361925, 28577440, 346316645, 4201744870, 51023399190, 620022989200, 7538489480075, 91696845873760, 1115794688036920, 13581508654978560, 165357977228808925, 2013721466517360650, 24527742112263770425, 298805688708113438240, 3640695209795092874290
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

More generally : a(n,m)=sum(k=0,n,binomial(m*k,k)*binomial(m*(n-k),n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256, A078995 for cases m=2,3 and 4.

Crossrefs

Programs

  • Maple
    seq(add(binomial(5*k,k)*binomial(5*(n-k),n-k),k=0..n), n=0..30); # Robert Israel, Jul 16 2015
  • Mathematica
    m = 5; Table[Sum[Binomial[m k, k] Binomial[m (n - k), n - k], {k, 0, n}], {n, 0, 17}] (* Michael De Vlieger, Sep 30 2015 *)
  • PARI
    main(size)=my(k,n,m=5); concat(1,vector(size,n, sum(k=0,n, binomial(m*k,k)*binomial(m*(n-k),n-k)))) \\ Anders Hellström, Jul 16 2015
    
  • PARI
    a(n) = sum(k=0,n,4^(n-k)*binomial(5*n+1,k));
    vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015

Formula

a(n) = 5/8*(3125/256)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.356...
c = sqrt(2)/sqrt(5*Pi) = 0.3568248232305542229... - Vaclav Kotesovec, May 25 2020
a(n) = Sum_{k=0..n} binomial(5*k+l,k) * binomial(5*(n-k)-l,n-k) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(4*n+k,k). (End)
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1/4, 1/2, 3/4], (3125/256)*x)^2 satisfies
((3125/2)*g^3*x^4-128*g^3*x^3)*g''''+((-3125*g^2*x^4+256*g^2*x^3)*g'+12500*g^3*x^3-576*g^3*x^2)*g'''+(-(9375/4)*g^2*x^4+192*g^2*x^3)*g''^2+(((28125/4)*g*x^4-576*g*x^3)*(g')^2+(-18750*g^2*x^3+864*g^2*x^2)*g'+22500*g^3*x^2-408*g^3*x)*g''+(-(46875/16)*x^4+240*x^3)*(g')^4+(9375*g*x^3-432*g*x^2)*(g')^3+(-11250*g^2*x^2+204*g^2*x)*(g')^2+(7500*g^3*x-12*g^3)*g'+120*g^4 = 0. - Robert Israel, Jul 16 2015
a(n) = [x^n] 1/((1-5*x) * (1-x)^(4*n+1)). - Seiichi Manyama, Aug 03 2025
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} 5^k * (-4)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
G.f.: g^2/(5-4*g)^2 where g = 1+x*g^5 is the g.f. of A002294. (End)

A160906 Row sums of A159841.

Original entry on oeis.org

1, 5, 29, 176, 1093, 6885, 43796, 280600, 1807781, 11698223, 75973189, 494889092, 3231947596, 21153123932, 138712176296, 911137377456, 5993760282021, 39481335979779, 260377117268087, 1719026098532296, 11360252318843933, 75141910203168229, 497431016774189912
Offset: 0

Views

Author

R. J. Mathar, May 29 2009

Keywords

Crossrefs

Programs

  • Maple
    A160906 := proc(n) add( A159841(n,k), k=0..n) ; end:
    seq(A160906(n), n=0..20) ;
  • Mathematica
    Table[Sum[Binomial[3*n+1, 2*n+k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 25 2017 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n+1, 2*n+k+1)); \\ Michel Marcus, Oct 31 2017
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-1)
    [simplify(a(n)) for n in range(21)] # Peter Luschny, May 19 2015
    

Formula

a(n) = Sum_{k=0..n} A159841(n,k).
Conjecture: a(2n+1) = A075273(3n).
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],-1). - Peter Luschny, May 19 2015
Conjecture: 2*n*(2*n-1)*(5*n-4)*a(n) +(-295*n^3+451*n^2-130*n-24)*a(n-1) +24*(5*n+1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Jul 20 2016
a(n) = [x^n] 1/((1 - 2*x)*(1 - x)^(2*n+1)). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 3^(3*n + 3/2) / (sqrt(Pi*n) * 2^(2*n + 1)). - Vaclav Kotesovec, Oct 25 2017
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+k,k). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g*(6-g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 16 2025

A079589 a(n) = C(5*n+1,n).

Original entry on oeis.org

1, 6, 55, 560, 5985, 65780, 736281, 8347680, 95548245, 1101716330, 12777711870, 148902215280, 1742058970275, 20448884000160, 240719591939480, 2840671544105280, 33594090947249085, 398039194165652550, 4724081931321677925, 56151322242892212960, 668324943343021950370
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

a(n) is the number of paths from (0,0) to (5n,n) taking north and east steps while avoiding exactly 2 consecutive north steps. - Shanzhen Gao, Apr 15 2010

Crossrefs

Programs

  • Magma
    [Binomial(5*n+1, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
  • Maple
    seq(binomial(5*n+1,n),n=0..100); # Robert Israel, Aug 07 2014
  • Mathematica
    Table[Binomial[5n+1,n],{n,0,20}]  (* Harvey P. Dale, Jan 23 2011 *)

Formula

a(n) is asymptotic to c*(3125/256)^n/sqrt(n) with c=0.557.... [c = 5^(3/2)/(sqrt(Pi)*2^(7/2)) = 0.55753878629774... - Vaclav Kotesovec, Feb 14 2019 and Aug 20 2025]
8*n*(4*n+1)*(2*n-1)*(4*n-1)*a(n) -5*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Jul 17 2014
G.f.: hypergeom([2/5, 3/5, 4/5, 6/5], [1/2, 3/4, 5/4], (3125/256)*x). - Robert Israel, Aug 07 2014
a(n) = [x^n] 1/(1 - x)^(2*(2*n+1)). - Ilya Gutkovskiy, Oct 10 2017
From Seiichi Manyama, Aug 16 2025: (Start)
a(n) = Sum_{k=0..n} binomial(5*n-k,n-k).
G.f.: 1/(1 - x*g^3*(5+g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: g^2/(5-4*g) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 4*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)

A371753 a(n) = Sum_{k=0..floor(n/2)} binomial(5*n-2*k-1,n-2*k).

Original entry on oeis.org

1, 4, 37, 376, 4013, 44064, 492871, 5585080, 63901421, 736575316, 8540549322, 99503540008, 1163910870767, 13660217796736, 160782910480936, 1897131524755896, 22433316399634669, 265775992115557076, 3154067508987675679, 37487016824453703920, 446148092364247390618
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Maple
    A371753 := proc(n)
        add( binomial(5*n-2*k-1,n-2*k),k=0..floor(n/2)) ;
    end proc:
    seq(A371753(n),n=0..50) ; # R. J. Mathar, Sep 27 2024
  • PARI
    a(n) = sum(k=0, n\2, binomial(5*n-2*k-1, n-2*k));

Formula

a(n) = [x^n] 1/((1-x^2) * (1-x)^(4*n)).
a(n) ~ 5^(5*n + 3/2) / (3 * sqrt(Pi*n) * 2^(8*n + 5/2)). - Vaclav Kotesovec, Apr 05 2024
Conjecture D-finite with recurrence +1024*n*(796184150374453*n -1374782084855770) *(4*n-3)*(2*n-1)*(4*n-1)*a(n) +64*(-4720591427354845074*n^5 +16046598674673412696*n^4 -14164434258362644374*n^3 -6132680339747354209*n^2 +16406971563067867560*n -7312237120275595200)*a(n-1) +40*(-4968388566264801507*n^5 +51044954667717039608*n^4 -218029351288077225930*n^3 +471970442274586326109*n^2 -511707487331990011785*n +221366817798624198360)*a(n-2) -25*(5*n-11) *(719005061479699*n -1438086256867727)*(5*n-9) *(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Sep 27 2024
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(4*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
G.f.: g^2/((-1+2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. (End)
G.f.: B(x)^2/(1 + 6*(B(x)-1)/5), where B(x) is the g.f. of A001449. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(-5+9*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 16 2025

A385632 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 8, 81, 872, 9669, 109128, 1246419, 14359304, 166512285, 1940885504, 22717923586, 266833238328, 3143237113479, 37119019790016, 439290932937672, 5208668386199112, 61861932606093901, 735804601177846968, 8763478151940329859, 104498114621004830160, 1247410783999193335434
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(5*n+1, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(4*n+1)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+k,k).
a(n) = 3^(5*n+1)*2^(-4*n-1) - binomial(5*n+1, n)*(hypergeom([1, -1-4*n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((3-2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 14 2025
From Seiichi Manyama, Aug 16 2025: (Start)
G.f.: 1/(1 - x*g^3*(15-7*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 2*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)

A386897 a(n) = 4^n * binomial(5*n/2,n).

Original entry on oeis.org

1, 10, 160, 2860, 53760, 1040060, 20500480, 409404600, 8255569920, 167718033340, 3427543285760, 70384350760360, 1451115518361600, 30018413447053080, 622759359440486400, 12951795276279787760, 269947721071617638400, 5637113741080428839100
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^k *(-1)^(n-k)*Binomial[5*n+1, k]*Binomial[2*n-k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
    A386897[n_] := 4^n*Binomial[5*n/2, n]; Array[A386897, 20, 0] (* Paolo Xausa, Aug 26 2025 *)
  • PARI
    a(n) = 4^n*binomial(5*n/2, n);

Formula

a(n) == 0 (mod 10) for n > 0.
a(n) = Sum_{k=0..n} binomial(5*n+1,k) * binomial(4*n-k,n-k).
a(n) = [x^n] (1+x)^(5*n+1)/(1-x)^(3*n+1).
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(3*n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n+k,k) * binomial(2*n-k,n-k).
a(n) = [x^n] 1/(1-4*x)^(3*n/2+1).
a(n) = [x^n] (1+4*x)^(5*n/2).
a(n) ~ 2^(n - 1/2) * 5^((5*n+1)/2) / (sqrt(Pi*n) * 3^((3*n+1)/2)). - Vaclav Kotesovec, Aug 07 2025
D-finite with recurrence 3*n*(n-1)*(3*n-4) *(3*n-2)*a(n) -20*(5*n-4) *(5*n-8)*(5*n-2) *(5*n-6)*a(n-2)=0. - R. J. Mathar, Aug 21 2025
O.g.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1/3, 1/2, 2/3], (12500*x^2)/27) + 10*x*hypergeom([7/10, 9/10, 11/10, 13/10], [5/6, 7/6, 3/2], (12500*x^2)/27). - Karol A. Penson, Aug 26 2025

A386895 a(n) = Sum_{k=0..n} binomial(5*n+1,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 8, 94, 1220, 16590, 231808, 3297154, 47490696, 690461070, 10111370720, 148929775544, 2203898519732, 32741261744802, 488010179737920, 7294326822378060, 109294796958693520, 1641111255497600910, 24688289062391137056, 372020649062760239080, 5614219481885985162960
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*n+1, k)*binomial(2*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(5*n+1)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^(3*n+1) * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n+1,k) * binomial(4*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(4*n-k,n-k).
a(n) = binomial(2*n, n)*hypergeom([-1-5*n, -n], [-2*n], -1). - Stefano Spezia, Aug 07 2025
D-finite with recurrence +135*n*(n-1)*(3*n-1)*(3*n-2)*a(n) +3*(n-1)*(104049*n^3 -434754*n^2 +745789*n -439424)*a(n-1) +36*(517211*n^4 -4353801*n^3 +13137926*n^2 -17477238*n +8846684)*a(n-2) +16*(-11442763*n^4 +46270475*n^3 +85309279*n^2 -584322689*n +652846590)*a(n-3) -4585920*(5*n-16) *(5*n-14) *(5*n-18)*(5*n-17)*a(n-4)=0. - R. J. Mathar, Aug 21 2025

A386896 a(n) = Sum_{k=0..n} binomial(5*n+1,k) * binomial(3*n-k,n-k).

Original entry on oeis.org

1, 9, 125, 1932, 31365, 523809, 8910356, 153544680, 2671398309, 46822319115, 825501663525, 14623742203200, 260088366645900, 4641248247561324, 83059406374007720, 1490097583932329232, 26790218420643034533, 482571492068274975135, 8707190579448431827991
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*n+1, k)*binomial(3*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(5*n+1)/(1-x)^(2*n+1).
a(n) = [x^n] 1/((1-x) * (1-2*x))^(2*n+1).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n+1,k) * binomial(3*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(2*n+k,k) * binomial(3*n-k,n-k).
a(n) = binomial(3*n, n)*hypergeom([-1-5*n, -n], [-3*n], -1). - Stefano Spezia, Aug 07 2025
D-finite with recurrence 202*n*(n-1)*(2*n-1)*(2*n-3)*a(n) -3*(n-1)*(2*n-3) *(14093*n^2-15245*n+5226)*a(n-1) +4*(355081*n^4 -1597876*n^3 +2789549*n^2 -2405270*n+926160)*a(n-2) -3840*(5*n-11)*(5*n-9) *(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Aug 21 2025

A386898 a(n) = Sum_{k=0..n} binomial(5*n+1,k) * binomial(5*n-k,n-k).

Original entry on oeis.org

1, 11, 199, 4031, 85919, 1885311, 42154111, 955020287, 21847988735, 503573013503, 11675986431999, 272033089535999, 6363380561141759, 149354395882487807, 3515589114309115903, 82957940541503045631, 1961823306198598418431, 46482660516543479939071
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*n+1, k)*binomial(5*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(5*n+1)/(1-x)^(4*n+1).
a(n) = [x^n] 1/((1-x) * (1-2*x)^(4*n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n} 2^k * binomial(4*n+k,k).
a(n) = binomial(5*n, n)*hypergeom([-1-5*n, -n], [-5*n], -1). - Stefano Spezia, Aug 07 2025
Showing 1-10 of 12 results. Next