A386811 a(n) = Sum_{k=0..n} binomial(4*n+1,k).
1, 6, 46, 378, 3214, 27896, 245506, 2182396, 19548046, 176142312, 1594831736, 14497410186, 132224930146, 1209397179048, 11088872706188, 101890087382168, 937973964234638, 8649109175873288, 79872298511230120, 738583466508887304, 6837944227813170424
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Magma
[&+[Binomial(4*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
-
Mathematica
Table[Sum[Binomial[4*n+1,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
-
PARI
a(n) = sum(k=0, n, binomial(4*n+1, k));
Formula
a(n) = [x^n] 1/((1-2*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n+k,k).
D-finite with recurrence +645*n*(3*n-1)*(3*n-2)*a(n) +8*(-56722*n^3+213090*n^2-305978*n+150255)*a(n-1) +128*(62908*n^3-282348*n^2+385070*n-126735)*a(n-2) +12288*(-2486*n^3+8918*n^2+758*n-18935)*a(n-3) -2949120*(2*n-7)*(4*n-13)*(4*n-11)*a(n-4)=0. - R. J. Mathar, Aug 03 2025
a(n) = 2^(4*n+1) - binomial(4*n+1, n)*(hypergeom([1, -1-3*n], [1+n], -1) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 07 2025
a(n) ~ 2^(8*n + 3/2) / (sqrt(Pi*n) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Aug 07 2025
G.f.: g^2/((2-g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/2), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(8-2*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 16 2025
Comments