cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006256 a(n) = Sum_{k=0..n} binomial(3*k,k)*binomial(3*n-3*k,n-k).

Original entry on oeis.org

1, 6, 39, 258, 1719, 11496, 77052, 517194, 3475071, 23366598, 157206519, 1058119992, 7124428836, 47983020624, 323240752272, 2177956129818, 14677216121871, 98923498131762, 666819212874501, 4495342330033938, 30308036621747679, 204356509814519712
Offset: 0

Views

Author

Keywords

Comments

The right-hand sides of several of the "Ruehr identities". - N. J. A. Sloane, Feb 20 2020
Convolution of A005809 with itself. - Emeric Deutsch, May 22 2003

References

  • Allouche, J-P. "Two binomial identities of Ruehr Revisited." The American Mathematical Monthly 126.3 (2019): 217-225.
  • Alzer, Horst, and Helmut Prodinger. "On Ruehr's Identities." Ars Comb. 139 (2018): 247-254.
  • Bai, Mei, and Wenchang Chu. "Seven equivalent binomial sums." Discrete Mathematics 343.2 (2020): 111691.
  • M. Petkovsek et al., A=B, Peters, 1996, p. 165.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006256 n = a006256_list !! n
    a006256_list = f (tail a005809_list) [1] where
       f (x:xs) zs = (sum $ zipWith (*) zs a005809_list) : f xs (x : zs)
    -- Reinhard Zumkeller, Sep 21 2014
    
  • Magma
    [&+[Binomial(3*k, k) *Binomial(3*n-3*k, n-k): k in [0..n]]:n in  [0..22]]; // Vincenzo Librandi, Feb 21 2020
  • Maple
    a:= proc(n) option remember; `if`(n<2, 5*n+1,
          ((216*n^2-270*n+96) *a(n-1)
          -81*(3*n-2)*(3*n-4) *a(n-2)) /(n*(16*n-8)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 07 2012
  • Mathematica
    a[n_] := HypergeometricPFQ[{1/3, 2/3, 1/2-n, -n}, {1/2, 1/3-n, 2/3-n}, 1]*(3n)!/(n!*(2n)!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 20 2012 *)
    Table[Sum[Binomial[3k,k]Binomial[3n-3k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 23 2013 *)
  • PARI
    a(n)=sum(k=0,n, binomial(3*k,k)*binomial(3*n-3*k,n-k)) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-2)
    [simplify(a(n)) for n in range(20)] # Peter Luschny, May 19 2015
    

Formula

a(n) = (3/4)*(27/4)^n*(1+c/sqrt(n)+o(n^(-1/2))) where c = (2/3)*sqrt(1/(3*Pi)) = 0.217156671956853298... More generally, a(n, m) = sum(k=0, n, C(m*k,k) *C(m*(n-k),n-k)) is asymptotic to (1/2)*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A078995 for cases m=2 and 4. - Benoit Cloitre, Jan 26 2003, extended by Vaclav Kotesovec, Nov 06 2012
G.f.: 1/(1-3*z*g^2)^2, where g=g(z) is given by g=1+z*g^3, g(0)=1, i.e. (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
D-finite with recurrence: 6*(36*n^2-45*n+16)*a(n-1) - 81*(3*n-4)*(3*n-2)*a(n-2) - 8*n*(2*n-1)*a(n) = 0. - Vaclav Kotesovec, Oct 05 2012
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = sum(k=0, n, C(3*k+l,k)*C(3*(n-k)-l,n-k)) for every real number l.
a(n) = sum(k=0, n, 2^(n-k)*C(3n+1,k)).
a(n) = sum(k=0, n, 3^(n-k)*C(2n+k,k)). (End)
From Akalu Tefera, Sean Meehan, Michael Weselcouch, and Aklilu Zeleke, May 11 2013: (Start)
a(n) = sum(k=0, 2n, (-3)^k*C(3n - k, n)).
a(n) = sum(k=0, 2n, (-4)^k*C(3n + 1, 2n - k)).
a(n) = sum(k=0, n, 3^k*C(3n - k, 2n)).
a(n) = sum(k=0, n, 2^k*C(3n + 1, n - k)). (End)
a(n) = C(3*n+1,n)*Hyper2F1(1,-n,2*n+2,-2). - Peter Luschny, May 19 2015
a(n) = [x^n] 1/((1-3*x) * (1-x)^(2*n+1)). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025

A079678 a(n) = a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) for m=5.

Original entry on oeis.org

1, 10, 115, 1360, 16265, 195660, 2361925, 28577440, 346316645, 4201744870, 51023399190, 620022989200, 7538489480075, 91696845873760, 1115794688036920, 13581508654978560, 165357977228808925, 2013721466517360650, 24527742112263770425, 298805688708113438240, 3640695209795092874290
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

More generally : a(n,m)=sum(k=0,n,binomial(m*k,k)*binomial(m*(n-k),n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256, A078995 for cases m=2,3 and 4.

Crossrefs

Programs

  • Maple
    seq(add(binomial(5*k,k)*binomial(5*(n-k),n-k),k=0..n), n=0..30); # Robert Israel, Jul 16 2015
  • Mathematica
    m = 5; Table[Sum[Binomial[m k, k] Binomial[m (n - k), n - k], {k, 0, n}], {n, 0, 17}] (* Michael De Vlieger, Sep 30 2015 *)
  • PARI
    main(size)=my(k,n,m=5); concat(1,vector(size,n, sum(k=0,n, binomial(m*k,k)*binomial(m*(n-k),n-k)))) \\ Anders Hellström, Jul 16 2015
    
  • PARI
    a(n) = sum(k=0,n,4^(n-k)*binomial(5*n+1,k));
    vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015

Formula

a(n) = 5/8*(3125/256)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.356...
c = sqrt(2)/sqrt(5*Pi) = 0.3568248232305542229... - Vaclav Kotesovec, May 25 2020
a(n) = Sum_{k=0..n} binomial(5*k+l,k) * binomial(5*(n-k)-l,n-k) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(4*n+k,k). (End)
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1/4, 1/2, 3/4], (3125/256)*x)^2 satisfies
((3125/2)*g^3*x^4-128*g^3*x^3)*g''''+((-3125*g^2*x^4+256*g^2*x^3)*g'+12500*g^3*x^3-576*g^3*x^2)*g'''+(-(9375/4)*g^2*x^4+192*g^2*x^3)*g''^2+(((28125/4)*g*x^4-576*g*x^3)*(g')^2+(-18750*g^2*x^3+864*g^2*x^2)*g'+22500*g^3*x^2-408*g^3*x)*g''+(-(46875/16)*x^4+240*x^3)*(g')^4+(9375*g*x^3-432*g*x^2)*(g')^3+(-11250*g^2*x^2+204*g^2*x)*(g')^2+(7500*g^3*x-12*g^3)*g'+120*g^4 = 0. - Robert Israel, Jul 16 2015
a(n) = [x^n] 1/((1-5*x) * (1-x)^(4*n+1)). - Seiichi Manyama, Aug 03 2025
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} 5^k * (-4)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
G.f.: g^2/(5-4*g)^2 where g = 1+x*g^5 is the g.f. of A002294. (End)

A386812 a(n) = Sum_{k=0..n} binomial(5*n+1,k).

Original entry on oeis.org

1, 7, 67, 697, 7547, 83682, 942649, 10739176, 123388763, 1427090845, 16593192942, 193774331494, 2271115189673, 26700463884244, 314735943548632, 3718522618187472, 44021808206431579, 522080025971331983, 6201449551502245321, 73767447652621434695, 878599223738760686422
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(5*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
  • Mathematica
    Table[Sum[Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 21 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(5*n+1, k));
    

Formula

a(n) = [x^n] 1/((1-2*x) * (1-x)^(4*n+1)).
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+k,k).
D-finite with recurrence 8*n*(2754528070303487*n -4672004545621835)*(4*n-3)*(2*n-1) *(4*n-1)*a(n) +(-5828620079131711179*n^5 -135826272187971586019*n^4 +779361612339655552281*n^3 -1570139520911413863589*n^2 +1419656431480813021170*n -487668485184225269400)*a(n-1) +40*(-21123668262204329085*n^5 +243394620512022153401*n^4 -982249084763267479011*n^3 +1849334401749026834935*n^2 -1662134287466221884960*n +573649997457991096080)*a(n-2) +6400*(5*n-13)*(5*n-11)*(2475036532470005*n-2376524337096748)*(5*n-9)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Aug 03 2025
a(n) = 2^(5*n+1) - binomial(5*n+1, n)*(hypergeom([1, -1-4*n], [1+n], -1) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((2-g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 12 2025
From Seiichi Manyama, Aug 16 2025: (Start)
G.f.: 1/(1 - x*g^3*(10-3*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 3*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)
a(n) ~ 5^(5*n + 3/2) / (3*sqrt(Pi*n) * 2^(8*n + 3/2)). - Vaclav Kotesovec, Aug 21 2025

A079589 a(n) = C(5*n+1,n).

Original entry on oeis.org

1, 6, 55, 560, 5985, 65780, 736281, 8347680, 95548245, 1101716330, 12777711870, 148902215280, 1742058970275, 20448884000160, 240719591939480, 2840671544105280, 33594090947249085, 398039194165652550, 4724081931321677925, 56151322242892212960, 668324943343021950370
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

a(n) is the number of paths from (0,0) to (5n,n) taking north and east steps while avoiding exactly 2 consecutive north steps. - Shanzhen Gao, Apr 15 2010

Crossrefs

Programs

  • Magma
    [Binomial(5*n+1, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
  • Maple
    seq(binomial(5*n+1,n),n=0..100); # Robert Israel, Aug 07 2014
  • Mathematica
    Table[Binomial[5n+1,n],{n,0,20}]  (* Harvey P. Dale, Jan 23 2011 *)

Formula

a(n) is asymptotic to c*(3125/256)^n/sqrt(n) with c=0.557.... [c = 5^(3/2)/(sqrt(Pi)*2^(7/2)) = 0.55753878629774... - Vaclav Kotesovec, Feb 14 2019 and Aug 20 2025]
8*n*(4*n+1)*(2*n-1)*(4*n-1)*a(n) -5*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Jul 17 2014
G.f.: hypergeom([2/5, 3/5, 4/5, 6/5], [1/2, 3/4, 5/4], (3125/256)*x). - Robert Israel, Aug 07 2014
a(n) = [x^n] 1/(1 - x)^(2*(2*n+1)). - Ilya Gutkovskiy, Oct 10 2017
From Seiichi Manyama, Aug 16 2025: (Start)
a(n) = Sum_{k=0..n} binomial(5*n-k,n-k).
G.f.: 1/(1 - x*g^3*(5+g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: g^2/(5-4*g) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 4*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)

A141223 Expansion of 1/(sqrt(1-4*x)*(1-3*x*c(x))), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 5, 24, 113, 526, 2430, 11166, 51105, 233190, 1061510, 4822984, 21879786, 99135076, 448707992, 2029215114, 9170247393, 41416383366, 186957126702, 843575853984, 3804927658878, 17156636097156, 77339426905812, 348553445817084, 1570548863858778, 7075531788285276
Offset: 0

Views

Author

Paul Barry, Jun 14 2008

Keywords

Comments

Binomial transform of A126932. Hankel transform is (-1)^n.
Row sums of the Riordan matrix (1/(1-4*x),(1-sqrt(1-4*x))/(2*sqrt(1-4*x))) (A188481). - Emanuele Munarini, Apr 01 2001

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3-12x+Sqrt[1-4x])/(4-34x+72x^2),{x,0,100}],x] (* Emanuele Munarini, Apr 01 2011 *)
  • Maxima
    makelist(sum(binomial(n+k,k)*3^(n-k),k,0,n),n,0,12); /* Emanuele Munarini, Apr 01 2011 */

Formula

a(n) = Sum_{k=0..n} C(2*n-k,n-k)*3^k.
From Emanuele Munarini, Apr 01 2011: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-3*x)). [Corrected by Seiichi Manyama, Aug 03 2025]
a(n) = 3^(2*n+1)/2^(n+2) + (1/4)*Sum_{k=0..n} binomial(2*k,k)*(9/2)^(n-k).
D-finite with recurrence: 2*(n+2)*a(n+2) - (17*n+30)*a(n+1) + 18*(2*n+3)*a(n) = 0.
G.f.: (3-12*x+sqrt(1-4*x))/(4-34*x+72*x^2). (End)
G.f.: (1/(1-4*x)^(1/2)+3)/(4-18*x) = (2 + x/(Q(0)-2*x))/(2-9*x) where Q(k) = 2*(2*k+1)*x + (k+1) - 2*(k+1)*(2*k+3)*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 18 2013
a(n) ~ 3^(2*n + 1) / 2^(n + 1). - Vaclav Kotesovec, Sep 15 2021
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+1,k). - Seiichi Manyama, Aug 03 2025
a(n) = 3^(2*n+1)*2^(-n-1) - binomial(2*n+1, n)*(hypergeom([1, -1-n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k). - Seiichi Manyama, Aug 07 2025

A371753 a(n) = Sum_{k=0..floor(n/2)} binomial(5*n-2*k-1,n-2*k).

Original entry on oeis.org

1, 4, 37, 376, 4013, 44064, 492871, 5585080, 63901421, 736575316, 8540549322, 99503540008, 1163910870767, 13660217796736, 160782910480936, 1897131524755896, 22433316399634669, 265775992115557076, 3154067508987675679, 37487016824453703920, 446148092364247390618
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Maple
    A371753 := proc(n)
        add( binomial(5*n-2*k-1,n-2*k),k=0..floor(n/2)) ;
    end proc:
    seq(A371753(n),n=0..50) ; # R. J. Mathar, Sep 27 2024
  • PARI
    a(n) = sum(k=0, n\2, binomial(5*n-2*k-1, n-2*k));

Formula

a(n) = [x^n] 1/((1-x^2) * (1-x)^(4*n)).
a(n) ~ 5^(5*n + 3/2) / (3 * sqrt(Pi*n) * 2^(8*n + 5/2)). - Vaclav Kotesovec, Apr 05 2024
Conjecture D-finite with recurrence +1024*n*(796184150374453*n -1374782084855770) *(4*n-3)*(2*n-1)*(4*n-1)*a(n) +64*(-4720591427354845074*n^5 +16046598674673412696*n^4 -14164434258362644374*n^3 -6132680339747354209*n^2 +16406971563067867560*n -7312237120275595200)*a(n-1) +40*(-4968388566264801507*n^5 +51044954667717039608*n^4 -218029351288077225930*n^3 +471970442274586326109*n^2 -511707487331990011785*n +221366817798624198360)*a(n-2) -25*(5*n-11) *(719005061479699*n -1438086256867727)*(5*n-9) *(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Sep 27 2024
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(4*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
G.f.: g^2/((-1+2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. (End)
G.f.: B(x)^2/(1 + 6*(B(x)-1)/5), where B(x) is the g.f. of A001449. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(-5+9*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 16 2025

A385605 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+1,k).

Original entry on oeis.org

1, 7, 58, 502, 4436, 39687, 358024, 3249288, 29624796, 271080124, 2487835678, 22888216006, 211010997716, 1948830506578, 18026768864736, 166976297995452, 1548523206590364, 14376415735219572, 133599985919343400, 1242638966005222648, 11567295503871866536
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n+1, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(3*n+k,k).
a(n) = 3^(4*n+1)*2^(-3*n-1) - binomial(4*n+1, n)*(hypergeom([1, -1-3*n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((3-2*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 14 2025
G.f.: B(x)^2/(1 + (B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(12-5*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 16 2025

A386371 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 3, 31, 317, 3399, 37418, 419229, 4756104, 54463335, 628197809, 7287712566, 84942987198, 993941174829, 11668806723876, 137378189197112, 1621322803014672, 19175540677541991, 227217662222902443, 2696878158795639549, 32057403690640189635, 381573145993865438254
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-3)^(n-k) * Binomial(5*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[(-3)^(n-k)*Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(5*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(5*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(4*n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(5*n-k,n-k).
G.f.: 1/(1 - x*g^3*(-10+13*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: g^2/((-2+3*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 7*(B(x)-1)/5), where B(x) is the g.f. of A001449.
D-finite with recurrence 648*n*(135551509682187347695*n -244103380745409504343) *(4*n-1)*(2*n-1)*(4*n-3)*a(n) +(-33979500619583537984836075*n^5 +130803893690808003041848009*n^4 -168380151442376797602371231*n^3 +62069291513227826684567999*n^2 +49760069127090078338544954*n -39530305857276050670355320)*a(n-1) +40*(-108999332467309598098777*n^5 -28981701912184019189355*n^4 -1554974299825191814369159*n^3 +13581461461293413639358363*n^2 -28599284433109723900055776*n +18909354537435947334628944)*a(n-2) +211200*(5*n-11) *(5*n-9)*(28440609019752807*n +93502568692163852)*(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Aug 26 2025
Showing 1-8 of 8 results.