cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006256 a(n) = Sum_{k=0..n} binomial(3*k,k)*binomial(3*n-3*k,n-k).

Original entry on oeis.org

1, 6, 39, 258, 1719, 11496, 77052, 517194, 3475071, 23366598, 157206519, 1058119992, 7124428836, 47983020624, 323240752272, 2177956129818, 14677216121871, 98923498131762, 666819212874501, 4495342330033938, 30308036621747679, 204356509814519712
Offset: 0

Views

Author

Keywords

Comments

The right-hand sides of several of the "Ruehr identities". - N. J. A. Sloane, Feb 20 2020
Convolution of A005809 with itself. - Emeric Deutsch, May 22 2003

References

  • Allouche, J-P. "Two binomial identities of Ruehr Revisited." The American Mathematical Monthly 126.3 (2019): 217-225.
  • Alzer, Horst, and Helmut Prodinger. "On Ruehr's Identities." Ars Comb. 139 (2018): 247-254.
  • Bai, Mei, and Wenchang Chu. "Seven equivalent binomial sums." Discrete Mathematics 343.2 (2020): 111691.
  • M. Petkovsek et al., A=B, Peters, 1996, p. 165.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006256 n = a006256_list !! n
    a006256_list = f (tail a005809_list) [1] where
       f (x:xs) zs = (sum $ zipWith (*) zs a005809_list) : f xs (x : zs)
    -- Reinhard Zumkeller, Sep 21 2014
    
  • Magma
    [&+[Binomial(3*k, k) *Binomial(3*n-3*k, n-k): k in [0..n]]:n in  [0..22]]; // Vincenzo Librandi, Feb 21 2020
  • Maple
    a:= proc(n) option remember; `if`(n<2, 5*n+1,
          ((216*n^2-270*n+96) *a(n-1)
          -81*(3*n-2)*(3*n-4) *a(n-2)) /(n*(16*n-8)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 07 2012
  • Mathematica
    a[n_] := HypergeometricPFQ[{1/3, 2/3, 1/2-n, -n}, {1/2, 1/3-n, 2/3-n}, 1]*(3n)!/(n!*(2n)!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 20 2012 *)
    Table[Sum[Binomial[3k,k]Binomial[3n-3k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 23 2013 *)
  • PARI
    a(n)=sum(k=0,n, binomial(3*k,k)*binomial(3*n-3*k,n-k)) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-2)
    [simplify(a(n)) for n in range(20)] # Peter Luschny, May 19 2015
    

Formula

a(n) = (3/4)*(27/4)^n*(1+c/sqrt(n)+o(n^(-1/2))) where c = (2/3)*sqrt(1/(3*Pi)) = 0.217156671956853298... More generally, a(n, m) = sum(k=0, n, C(m*k,k) *C(m*(n-k),n-k)) is asymptotic to (1/2)*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A078995 for cases m=2 and 4. - Benoit Cloitre, Jan 26 2003, extended by Vaclav Kotesovec, Nov 06 2012
G.f.: 1/(1-3*z*g^2)^2, where g=g(z) is given by g=1+z*g^3, g(0)=1, i.e. (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
D-finite with recurrence: 6*(36*n^2-45*n+16)*a(n-1) - 81*(3*n-4)*(3*n-2)*a(n-2) - 8*n*(2*n-1)*a(n) = 0. - Vaclav Kotesovec, Oct 05 2012
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = sum(k=0, n, C(3*k+l,k)*C(3*(n-k)-l,n-k)) for every real number l.
a(n) = sum(k=0, n, 2^(n-k)*C(3n+1,k)).
a(n) = sum(k=0, n, 3^(n-k)*C(2n+k,k)). (End)
From Akalu Tefera, Sean Meehan, Michael Weselcouch, and Aklilu Zeleke, May 11 2013: (Start)
a(n) = sum(k=0, 2n, (-3)^k*C(3n - k, n)).
a(n) = sum(k=0, 2n, (-4)^k*C(3n + 1, 2n - k)).
a(n) = sum(k=0, n, 3^k*C(3n - k, 2n)).
a(n) = sum(k=0, n, 2^k*C(3n + 1, n - k)). (End)
a(n) = C(3*n+1,n)*Hyper2F1(1,-n,2*n+2,-2). - Peter Luschny, May 19 2015
a(n) = [x^n] 1/((1-3*x) * (1-x)^(2*n+1)). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025

A078995 a(n) = Sum_{k=0..n} C(4*k,k)*C(4*(n-k),n-k).

Original entry on oeis.org

1, 8, 72, 664, 6184, 57888, 543544, 5113872, 48180456, 454396000, 4288773152, 40503496536, 382701222296, 3617396099936, 34203591636048, 323492394385824, 3060238763412072, 28955508198895584, 274018698082833760, 2593539713410178528, 24550565251665845664
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

See A049235 for more information.

Programs

  • Maple
    series(eval(g/(3*g-4), g=RootOf(g = 1+x*g^4,g))^2, x=0, 30); # Mark van Hoeij, May 06 2013
  • Mathematica
    Table[Sum[Binomial[4*k, k]*Binomial[4*(n - k), n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*k, k)*binomial(4*(n-k), n-k)); \\ Michel Marcus, May 09 2020

Formula

a(n) = 2/3*(256/27)^n*(1+c/sqrt(n)+o(n^-1/2)) where c = 2/3*sqrt(2/(3*Pi)) = 0.307105910641187... More generally, a(n, m)=sum(k=0, n, binomial(m*k, k)*binomial(m*(n-k), n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256 for cases m=2 and 3. - Benoit Cloitre, Jan 26 2003, corrected and extended by Vaclav Kotesovec, Nov 06 2012
243*n*(8*n - 17)*(3*n - 1)*(3*n - 4)*(3*n - 2)*(3*n - 5)*a(n) = 72*(3*n - 5)*(3*n - 4)*(6912*n^4 - 33120*n^3 + 58256*n^2 - 47798*n + 15309)*a(n - 1) - 3072*(2*n - 3)*(6912*n^5 - 55008*n^4 + 175696*n^3 - 282180*n^2 + 227825*n - 73710)*a(n - 2) + 262144*(n - 2)*(4*n - 7)*(2*n - 3)*(2*n - 5)*(4*n - 9)*(8*n - 9)*a(n - 3). - Vladeta Jovovic, Jul 16 2004
Shorter recurrence: 81*n*(3*n-2)*(3*n-1)*(8*n-11)*a(n) = 24*(4608*n^4-14400*n^3+15776*n^2-7346*n+1215)*a(n-1) - 2048*(2*n-3)*(4*n-5)*(4*n-3)*(8*n-3)*a(n-2). - Vaclav Kotesovec, Nov 06 2012
a(n) = Sum_{k=0..n} binomial(4*k+l,k) * binomial(4*(n-k)-l,n-k) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(3*n+k,k). (End)
G.f.: g^2/(3*g-4)^2 where g=ogf(A002293) satisfies g = 1+x*g^4. - Mark van Hoeij, May 06 2013
a(n) = [x^n] 1/((1-4*x) * (1-x)^(3*n+1)). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 15 2025

A386811 a(n) = Sum_{k=0..n} binomial(4*n+1,k).

Original entry on oeis.org

1, 6, 46, 378, 3214, 27896, 245506, 2182396, 19548046, 176142312, 1594831736, 14497410186, 132224930146, 1209397179048, 11088872706188, 101890087382168, 937973964234638, 8649109175873288, 79872298511230120, 738583466508887304, 6837944227813170424
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(4*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
  • Mathematica
    Table[Sum[Binomial[4*n+1,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n+1, k));
    

Formula

a(n) = [x^n] 1/((1-2*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n+k,k).
D-finite with recurrence +645*n*(3*n-1)*(3*n-2)*a(n) +8*(-56722*n^3+213090*n^2-305978*n+150255)*a(n-1) +128*(62908*n^3-282348*n^2+385070*n-126735)*a(n-2) +12288*(-2486*n^3+8918*n^2+758*n-18935)*a(n-3) -2949120*(2*n-7)*(4*n-13)*(4*n-11)*a(n-4)=0. - R. J. Mathar, Aug 03 2025
a(n) = 2^(4*n+1) - binomial(4*n+1, n)*(hypergeom([1, -1-3*n], [1+n], -1) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 07 2025
a(n) ~ 2^(8*n + 3/2) / (sqrt(Pi*n) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Aug 07 2025
G.f.: g^2/((2-g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/2), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(8-2*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 16 2025

A147855 G.f.: 1 / (1 + 4*x*G(x)^2 - 7*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 3, 22, 174, 1444, 12323, 107104, 942952, 8381596, 75053100, 676017962, 6118171326, 55591175956, 506805088026, 4633571685968, 42468065811884, 390071875757852, 3589637747968964, 33089300640166360, 305476314574338648, 2823932709938708824, 26137341654281261347
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 22*x^2 + 174*x^3 + 1444*x^4 + 12323*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 4*x*G(x)^2 - 7*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+k,n-k]*Binomial[2*n-k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+k, n-k)*binomial(2*n-k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(k, n-k)*binomial(4*n-k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+4*x*G^2-7*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-3*x*G^2-7*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(k, n-k) * C(4*n-k, k).
a(n) = Sum_{k=0..n} C(n+k, n-k) * C(3*n-k, k).
a(n) = Sum_{k=0..n} C(2*n+k, n-k) * C(2*n-k, k).
a(n) = Sum_{k=0..n} C(3*n+k, n-k) * C(n-k, k).
a(n) = Sum_{k=0..n} C(4*n+k, n-k) * C(-k, k).
G.f.: 1 / (1 - 3*x*G(x)^2 - 7*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+5/2)/(5*sqrt(Pi*n)*3^(3*n+1/2)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Apr 05 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(4*n-2*k-1,n-2*k).
a(n) = [x^n] 1/((1-x^2) * (1-x)^(3*n)). (End)
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-1+2*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 5*(B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A141223 Expansion of 1/(sqrt(1-4*x)*(1-3*x*c(x))), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 5, 24, 113, 526, 2430, 11166, 51105, 233190, 1061510, 4822984, 21879786, 99135076, 448707992, 2029215114, 9170247393, 41416383366, 186957126702, 843575853984, 3804927658878, 17156636097156, 77339426905812, 348553445817084, 1570548863858778, 7075531788285276
Offset: 0

Views

Author

Paul Barry, Jun 14 2008

Keywords

Comments

Binomial transform of A126932. Hankel transform is (-1)^n.
Row sums of the Riordan matrix (1/(1-4*x),(1-sqrt(1-4*x))/(2*sqrt(1-4*x))) (A188481). - Emanuele Munarini, Apr 01 2001

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3-12x+Sqrt[1-4x])/(4-34x+72x^2),{x,0,100}],x] (* Emanuele Munarini, Apr 01 2011 *)
  • Maxima
    makelist(sum(binomial(n+k,k)*3^(n-k),k,0,n),n,0,12); /* Emanuele Munarini, Apr 01 2011 */

Formula

a(n) = Sum_{k=0..n} C(2*n-k,n-k)*3^k.
From Emanuele Munarini, Apr 01 2011: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-3*x)). [Corrected by Seiichi Manyama, Aug 03 2025]
a(n) = 3^(2*n+1)/2^(n+2) + (1/4)*Sum_{k=0..n} binomial(2*k,k)*(9/2)^(n-k).
D-finite with recurrence: 2*(n+2)*a(n+2) - (17*n+30)*a(n+1) + 18*(2*n+3)*a(n) = 0.
G.f.: (3-12*x+sqrt(1-4*x))/(4-34*x+72*x^2). (End)
G.f.: (1/(1-4*x)^(1/2)+3)/(4-18*x) = (2 + x/(Q(0)-2*x))/(2-9*x) where Q(k) = 2*(2*k+1)*x + (k+1) - 2*(k+1)*(2*k+3)*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 18 2013
a(n) ~ 3^(2*n + 1) / 2^(n + 1). - Vaclav Kotesovec, Sep 15 2021
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+1,k). - Seiichi Manyama, Aug 03 2025
a(n) = 3^(2*n+1)*2^(-n-1) - binomial(2*n+1, n)*(hypergeom([1, -1-n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k). - Seiichi Manyama, Aug 07 2025

A226733 G.f.: 1 / (1 + 8*x*G(x)^2 - 10*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 2, 18, 142, 1186, 10152, 88414, 779508, 6936066, 62159224, 560238728, 5072970366, 46114086446, 420558296888, 3846232573236, 35261290343112, 323952686556354, 2981787128165592, 27491128592627800, 253835886034173848, 2346892194318851016, 21724880414632781472
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 142*x^3 + 1186*x^4 + 10152*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 8*x*G(x)^2 - 10*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+2*k,n-k]*Binomial[2*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+8*x*G^2-10*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-2*x*G^2-10*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+2*k, n-k)*binomial(2*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(4*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(4*n+2*k, n-k)*binomial(-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(4*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(4*n+2*k, n-k) * C(-2*k, k).
G.f.: 1 / (1 - 2*x*G(x)^2 - 10*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+3/2)/(3^(3*n+3/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 3*(B(x)-1)/2), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A385632 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 8, 81, 872, 9669, 109128, 1246419, 14359304, 166512285, 1940885504, 22717923586, 266833238328, 3143237113479, 37119019790016, 439290932937672, 5208668386199112, 61861932606093901, 735804601177846968, 8763478151940329859, 104498114621004830160, 1247410783999193335434
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(5*n+1, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(4*n+1)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+k,k).
a(n) = 3^(5*n+1)*2^(-4*n-1) - binomial(5*n+1, n)*(hypergeom([1, -1-4*n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((3-2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 14 2025
From Seiichi Manyama, Aug 16 2025: (Start)
G.f.: 1/(1 - x*g^3*(15-7*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 2*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)

A226761 G.f.: 1 / (1 + 12*x*G(x)^2 - 13*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 16, 118, 1004, 8601, 75076, 662796, 5903676, 52949332, 477533356, 4326309406, 39343725716, 358943047438, 3283745710968, 30112624408488, 276715616909148, 2547523969430508, 23491659440021920, 216942761366305144, 2006084011596742384, 18572529488934397689
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 16*x^2 + 118*x^3 + 1004*x^4 + 8601*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 12*x*G(x)^2 - 13*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+3*k,n-k]*Binomial[2*n-3*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 17 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+12*x*G^2-13*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-x*G^2-13*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+3*k, n-k)*binomial(2*n-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(3*k, n-k)*binomial(4*n-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(4*n+3*k, n-k)*binomial(-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(3*k, n-k) * C(4*n-3*k, k).
a(n) = Sum_{k=0..n} C(n+3*k, n-k) * C(3*n-3*k, k).
a(n) = Sum_{k=0..n} C(2*n+3*k, n-k) * C(2*n-3*k, k).
a(n) = Sum_{k=0..n} C(3*n+3*k, n-k) * C(n-3*k, k).
a(n) = Sum_{k=0..n} C(4*n+3*k, n-k) * C(-3*k, k).
G.f.: 1 / (1 - x*G(x)^2 - 13*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+5/2)/(7*3^(3*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 17 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+3*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} (-4)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-3)^k * 4^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-3+4*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 7*(B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025
Showing 1-8 of 8 results.