cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A183160 a(n) = Sum_{k=0..n} C(n+k,n-k)*C(2*n-k,k).

Original entry on oeis.org

1, 2, 11, 62, 367, 2232, 13820, 86662, 548591, 3498146, 22436251, 144583496, 935394436, 6071718512, 39523955552, 257913792342, 1686627623151, 11050540084902, 72522925038257, 476669316338542, 3137209052543927, 20672732229560032, 136374124374593072, 900541325129687272
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2010

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 62*x^3 + 367*x^4 + 2232*x^5 +...
A(x)^(1/2) = 1 + x + 5*x^2 + 26*x^3 + 145*x^4 + 841*x^5 + 5006*x^6 +...+ A183161(n)*x^n +...
Given triangle A085478(n,k) = C(n+k,n-k), which begins:
  1;
  1,  1;
  1,  3,  1;
  1,  6,  5,  1;
  1, 10, 15,  7, 1;
  1, 15, 35, 28, 9, 1; ...
ILLUSTRATE formula a(n) = Sum_{k=0..n} A085478(n,k)*A085478(n,n-k):
a(2) = 11 = 1*1 + 3*3 + 1*1;
a(3) = 62 = 1*1 + 6*5 + 5*6 + 1*1;
a(4) = 367 = 1*1 + 10*7 + 15*15 + 7*10 + 1*1;
a(5) = 2232 = 1*1 + 15*9 + 35*28 + 28*35 + 9*15 + 1*1; ...
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+k, 2*k)*Binomial(2*n-k, k): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 22 2021
  • Mathematica
    Table[Sum[Binomial[n+k,n-k]Binomial[2n-k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 19 2011 *)
    Table[HypergeometricPFQ[{-n, -n, 1/2 -n, n+1}, {1/2, 1, -2*n}, 1], {n, 0, 25}] (* G. C. Greubel, Feb 22 2021 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n+k,n-k)*binomial(2*n-k,k))}
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/(1-2*x*G^2-3*x^2*G^4), n)} \\ Paul D. Hanna, Nov 03 2012
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/(1+3*x*G-5*x*G^2), n)} \\ Paul D. Hanna, Jun 16 2013
    for(n=0, 30, print1(a(n), ", "))
    
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],2)
    [simplify(a(n)) for n in range(26)] # Peter Luschny, May 19 2015
    

Formula

a(n) = Sum_{k=0..n} A085478(n,k)*A085478(n,n-k).
Self-convolution of A183161 (an integer sequence):
a(n) = Sum_{k=0..n} A183161(k)*A183161(n-k).
a(n) = Sum_{k=0..n} binomial(2*n+k,k) * cos((n+k)*Pi). - Arkadiusz Wesolowski, Apr 02 2012
Recurrence: 320*n*(2*n-1)*a(n) = 8*(346*n^2 + 79*n - 327)*a(n-1) + 6*(1688*n^2-6241*n+5981)*a(n-2) + 261*(3*n-7)*(3*n-5)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(3*n+3/2)/(2^(2*n+3)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
...
G.f.: A(x) = 1/(1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 03 2012
G.f.: A(x) = 1 + x*d/dx { log( G(x)^5/(1+x*G(x)^2) )/2 }, where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 04 2012
G.f.: A(x) = 1/(1 + 3*x*G(x) - 5*x*G(x)^2), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Jun 16 2013
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],2). - Peter Luschny, May 19 2015
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^(2*n)). - Ilya Gutkovskiy, Oct 25 2017
From G. C. Greubel, Feb 22 2021: (Start)
a(n) = Sum_{k=0..n} A171822(n, k).
a(n) = Hypergeometric 4F3([-n, -n, 1/2 -n, n+1], [1/2, 1, -2*n], 1). (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-2*k-1,n-2*k). - Seiichi Manyama, Apr 05 2024
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+1,k). - Seiichi Manyama, Aug 03 2025
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k).
G.f.: g^2/((-1+2*g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. (End)
G.f.: B(x)^2/(1 + 4*(B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025

A078995 a(n) = Sum_{k=0..n} C(4*k,k)*C(4*(n-k),n-k).

Original entry on oeis.org

1, 8, 72, 664, 6184, 57888, 543544, 5113872, 48180456, 454396000, 4288773152, 40503496536, 382701222296, 3617396099936, 34203591636048, 323492394385824, 3060238763412072, 28955508198895584, 274018698082833760, 2593539713410178528, 24550565251665845664
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

See A049235 for more information.

Programs

  • Maple
    series(eval(g/(3*g-4), g=RootOf(g = 1+x*g^4,g))^2, x=0, 30); # Mark van Hoeij, May 06 2013
  • Mathematica
    Table[Sum[Binomial[4*k, k]*Binomial[4*(n - k), n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*k, k)*binomial(4*(n-k), n-k)); \\ Michel Marcus, May 09 2020

Formula

a(n) = 2/3*(256/27)^n*(1+c/sqrt(n)+o(n^-1/2)) where c = 2/3*sqrt(2/(3*Pi)) = 0.307105910641187... More generally, a(n, m)=sum(k=0, n, binomial(m*k, k)*binomial(m*(n-k), n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256 for cases m=2 and 3. - Benoit Cloitre, Jan 26 2003, corrected and extended by Vaclav Kotesovec, Nov 06 2012
243*n*(8*n - 17)*(3*n - 1)*(3*n - 4)*(3*n - 2)*(3*n - 5)*a(n) = 72*(3*n - 5)*(3*n - 4)*(6912*n^4 - 33120*n^3 + 58256*n^2 - 47798*n + 15309)*a(n - 1) - 3072*(2*n - 3)*(6912*n^5 - 55008*n^4 + 175696*n^3 - 282180*n^2 + 227825*n - 73710)*a(n - 2) + 262144*(n - 2)*(4*n - 7)*(2*n - 3)*(2*n - 5)*(4*n - 9)*(8*n - 9)*a(n - 3). - Vladeta Jovovic, Jul 16 2004
Shorter recurrence: 81*n*(3*n-2)*(3*n-1)*(8*n-11)*a(n) = 24*(4608*n^4-14400*n^3+15776*n^2-7346*n+1215)*a(n-1) - 2048*(2*n-3)*(4*n-5)*(4*n-3)*(8*n-3)*a(n-2). - Vaclav Kotesovec, Nov 06 2012
a(n) = Sum_{k=0..n} binomial(4*k+l,k) * binomial(4*(n-k)-l,n-k) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(3*n+k,k). (End)
G.f.: g^2/(3*g-4)^2 where g=ogf(A002293) satisfies g = 1+x*g^4. - Mark van Hoeij, May 06 2013
a(n) = [x^n] 1/((1-4*x) * (1-x)^(3*n+1)). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 15 2025

A079678 a(n) = a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) for m=5.

Original entry on oeis.org

1, 10, 115, 1360, 16265, 195660, 2361925, 28577440, 346316645, 4201744870, 51023399190, 620022989200, 7538489480075, 91696845873760, 1115794688036920, 13581508654978560, 165357977228808925, 2013721466517360650, 24527742112263770425, 298805688708113438240, 3640695209795092874290
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

More generally : a(n,m)=sum(k=0,n,binomial(m*k,k)*binomial(m*(n-k),n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256, A078995 for cases m=2,3 and 4.

Crossrefs

Programs

  • Maple
    seq(add(binomial(5*k,k)*binomial(5*(n-k),n-k),k=0..n), n=0..30); # Robert Israel, Jul 16 2015
  • Mathematica
    m = 5; Table[Sum[Binomial[m k, k] Binomial[m (n - k), n - k], {k, 0, n}], {n, 0, 17}] (* Michael De Vlieger, Sep 30 2015 *)
  • PARI
    main(size)=my(k,n,m=5); concat(1,vector(size,n, sum(k=0,n, binomial(m*k,k)*binomial(m*(n-k),n-k)))) \\ Anders Hellström, Jul 16 2015
    
  • PARI
    a(n) = sum(k=0,n,4^(n-k)*binomial(5*n+1,k));
    vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015

Formula

a(n) = 5/8*(3125/256)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.356...
c = sqrt(2)/sqrt(5*Pi) = 0.3568248232305542229... - Vaclav Kotesovec, May 25 2020
a(n) = Sum_{k=0..n} binomial(5*k+l,k) * binomial(5*(n-k)-l,n-k) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(4*n+k,k). (End)
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1/4, 1/2, 3/4], (3125/256)*x)^2 satisfies
((3125/2)*g^3*x^4-128*g^3*x^3)*g''''+((-3125*g^2*x^4+256*g^2*x^3)*g'+12500*g^3*x^3-576*g^3*x^2)*g'''+(-(9375/4)*g^2*x^4+192*g^2*x^3)*g''^2+(((28125/4)*g*x^4-576*g*x^3)*(g')^2+(-18750*g^2*x^3+864*g^2*x^2)*g'+22500*g^3*x^2-408*g^3*x)*g''+(-(46875/16)*x^4+240*x^3)*(g')^4+(9375*g*x^3-432*g*x^2)*(g')^3+(-11250*g^2*x^2+204*g^2*x)*(g')^2+(7500*g^3*x-12*g^3)*g'+120*g^4 = 0. - Robert Israel, Jul 16 2015
a(n) = [x^n] 1/((1-5*x) * (1-x)^(4*n+1)). - Seiichi Manyama, Aug 03 2025
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} 5^k * (-4)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
G.f.: g^2/(5-4*g)^2 where g = 1+x*g^5 is the g.f. of A002294. (End)

A160906 Row sums of A159841.

Original entry on oeis.org

1, 5, 29, 176, 1093, 6885, 43796, 280600, 1807781, 11698223, 75973189, 494889092, 3231947596, 21153123932, 138712176296, 911137377456, 5993760282021, 39481335979779, 260377117268087, 1719026098532296, 11360252318843933, 75141910203168229, 497431016774189912
Offset: 0

Views

Author

R. J. Mathar, May 29 2009

Keywords

Crossrefs

Programs

  • Maple
    A160906 := proc(n) add( A159841(n,k), k=0..n) ; end:
    seq(A160906(n), n=0..20) ;
  • Mathematica
    Table[Sum[Binomial[3*n+1, 2*n+k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 25 2017 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n+1, 2*n+k+1)); \\ Michel Marcus, Oct 31 2017
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-1)
    [simplify(a(n)) for n in range(21)] # Peter Luschny, May 19 2015
    

Formula

a(n) = Sum_{k=0..n} A159841(n,k).
Conjecture: a(2n+1) = A075273(3n).
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],-1). - Peter Luschny, May 19 2015
Conjecture: 2*n*(2*n-1)*(5*n-4)*a(n) +(-295*n^3+451*n^2-130*n-24)*a(n-1) +24*(5*n+1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Jul 20 2016
a(n) = [x^n] 1/((1 - 2*x)*(1 - x)^(2*n+1)). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 3^(3*n + 3/2) / (sqrt(Pi*n) * 2^(2*n + 1)). - Vaclav Kotesovec, Oct 25 2017
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+k,k). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g*(6-g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 16 2025

A079679 a(n) = a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) for m=6.

Original entry on oeis.org

1, 12, 168, 2424, 35400, 520236, 7674144, 113482584, 1681028136, 24932533800, 370144424376, 5499182587416, 81748907485248, 1215834858032820, 18090048027643200, 269246037610828656, 4008495234662771688, 59692297399976544120, 889090275714779739120, 13245013739104555683600
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

More generally : a(n,m)=sum(k=0,n,binomial(m*k,k)*binomial(m*(n-k),n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256, A078995 for cases m=2,3 and 4.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0,n,5^(n-k)*binomial(6*n+1,k));
    vector(30, n, a(n-1)) \\  Altug Alkan, Sep 30 2015

Formula

a(n) = 3/5*(46656/3125)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.388...
c = 8/(3*sqrt(15*Pi)) = 0.388461664210517... - Vaclav Kotesovec, May 25 2020
a(n) = Sum_{k=0..n} binomial(6*k+l,k)*binomial(6*(n-k)-l,n-k) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(6*n+1,k).
a(n) = Sum_{k=0..n} 6^(n-k) * binomial(5*n+k,k). (End)
G.f.: hypergeom([1/6, 1/3, 1/2, 2/3, 5/6],[1/5, 2/5, 3/5, 4/5],46656*x/3125)^2. - Mark van Hoeij, Apr 19 2013
a(n) = [x^n] 1/((1-6*x) * (1-x)^(5*n+1)). - Seiichi Manyama, Aug 03 2025
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} 6^k * (-5)^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
G.f.: g^2/(6-5*g)^2 where g = 1+x*g^6 is the g.f. of A002295. (End)

A036829 a(n) = Sum_{k=0..n-1} C(3*k,k)*C(3*n-3*k-2,n-k-1).

Original entry on oeis.org

0, 1, 7, 48, 327, 2221, 15060, 102012, 690519, 4671819, 31596447, 213633696, 1444131108, 9760401756, 65957919496, 445671648228, 3011064814455, 20341769686311, 137412453018933, 928188965638464, 6269358748632207, 42343731580741821
Offset: 0

Views

Author

Keywords

References

  • M. Petkovsek et al., A=B, Peters, 1996, p. 97.

Crossrefs

Programs

  • Haskell
    a036829 n = sum $ map
       (\k -> (a007318 (3*k) k) * (a007318 (3*n-3*k-2) (n-k-1))) [0..n-1]
    -- Reinhard Zumkeller, May 24 2012
  • Mathematica
    Table[Sum[Binomial[3k,k]Binomial[3n-3k-2,n-k-1],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Jan 10 2012 *)

Formula

G.f.: (g-g^2)/(3*g-1)^2 where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
Recurrence: 8*(n-1)*(2*n-1)*a(n) = 6*(36*n^2-81*n+49)*a(n-1) - 81*(3*n-5)*(3*n-4)*a(n-2). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 3^(3*n-1)/2^(2*n+1). - Vaclav Kotesovec, Dec 29 2012
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/3) * log( Sum_{k>=0} binomial(3*k,k)*x^k ). - Seiichi Manyama, Jul 19 2025
G.f.: (g-1)/(3-2*g)^2 where g=1+x*g^3. - Seiichi Manyama, Jul 26 2025

A062236 Sum of the levels of all nodes in all noncrossing trees with n edges.

Original entry on oeis.org

1, 8, 58, 408, 2831, 19496, 133638, 913200, 6226591, 42387168, 288194424, 1957583712, 13286865060, 90126841064, 611029568078, 4140789069408, 28050809681679, 189964288098632, 1286119453570746, 8705397371980728, 58912358137385559, 398607288093924192, 2696583955707785256
Offset: 1

Views

Author

Emeric Deutsch, Jun 30 2001

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add(2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n,i),i=0..n-1)/n;
    A062236 := n -> 2^(n-2)*(3*n-1)*hypergeom([-3*n,1-n,-n+4/3], [-n,-n+1/3], -1/2):
    seq(simplify(A062236(n)), n = 1..29); # Peter Luschny, Oct 28 2022
  • Mathematica
    Table[Sum[2^(n-2-k)*(n-k)*(3*n-3*k-1)*Binomial[3*n,k],{k,0,n-1}]/n,{n,1,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
  • PARI
    { for (n=1, 200, a=sum(i=0, n-1, 2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n, i))/n; write("b062236.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 03 2009

Formula

G.f.: g*(g-1)/(3-2*g)^2, where function g=g(x) satisfies g=1+xg^3, and can be expressed as g(x) = 2*sin(arcsin(3*sqrt(3*x)/2)/3)/sqrt(3*x). [Corrected by Max Alekseyev, Oct 27 2022]
g(x) = Sum_{n >= 0} binomial(3*n,n) / (2*n+1) * x^n. - Max Alekseyev, Oct 27 2022
Recurrence: 8*n*(2*n-1)*a(n) = 6*(36*n^2-45*n+10)*a(n-1) - 81*(3*n-5)*(3*n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 3^(3*n)/2^(2*n+2). - Vaclav Kotesovec, Oct 13 2012
a(n) = Sum_{i=0..n-1} C(3*i-1,i)*C(3*(n-i),n-i-1). - Vladimir Kruchinin, Jun 09 2020
a(n) = 2^(n-2)*(3*n-1)*hypergeometric([-3*n, 1-n, -n+4/3], [-n, -n+1/3], -1/2). The a(n) are values of the polynomials A358091. - Peter Luschny, Oct 28 2022
From Seiichi Manyama, Jul 26 2025: (Start)
G.f.: g/(1-3*g)^2 where g*(1-g)^2 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/2) * log( Sum_{k>=0} binomial(3*k-1,k)*x^k ). (End)
From Seiichi Manyama, Jul 29 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(3*k-1+l,k) * binomial(3*n-3*k-l,n-k-1) for every real number l. This is a generalization of a formula by Vladimir Kruchinin, Jun 09 2020.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(3*n,k).
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(2*n+k,k). (End)

A141223 Expansion of 1/(sqrt(1-4*x)*(1-3*x*c(x))), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 5, 24, 113, 526, 2430, 11166, 51105, 233190, 1061510, 4822984, 21879786, 99135076, 448707992, 2029215114, 9170247393, 41416383366, 186957126702, 843575853984, 3804927658878, 17156636097156, 77339426905812, 348553445817084, 1570548863858778, 7075531788285276
Offset: 0

Views

Author

Paul Barry, Jun 14 2008

Keywords

Comments

Binomial transform of A126932. Hankel transform is (-1)^n.
Row sums of the Riordan matrix (1/(1-4*x),(1-sqrt(1-4*x))/(2*sqrt(1-4*x))) (A188481). - Emanuele Munarini, Apr 01 2001

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3-12x+Sqrt[1-4x])/(4-34x+72x^2),{x,0,100}],x] (* Emanuele Munarini, Apr 01 2011 *)
  • Maxima
    makelist(sum(binomial(n+k,k)*3^(n-k),k,0,n),n,0,12); /* Emanuele Munarini, Apr 01 2011 */

Formula

a(n) = Sum_{k=0..n} C(2*n-k,n-k)*3^k.
From Emanuele Munarini, Apr 01 2011: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-3*x)). [Corrected by Seiichi Manyama, Aug 03 2025]
a(n) = 3^(2*n+1)/2^(n+2) + (1/4)*Sum_{k=0..n} binomial(2*k,k)*(9/2)^(n-k).
D-finite with recurrence: 2*(n+2)*a(n+2) - (17*n+30)*a(n+1) + 18*(2*n+3)*a(n) = 0.
G.f.: (3-12*x+sqrt(1-4*x))/(4-34*x+72*x^2). (End)
G.f.: (1/(1-4*x)^(1/2)+3)/(4-18*x) = (2 + x/(Q(0)-2*x))/(2-9*x) where Q(k) = 2*(2*k+1)*x + (k+1) - 2*(k+1)*(2*k+3)*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 18 2013
a(n) ~ 3^(2*n + 1) / 2^(n + 1). - Vaclav Kotesovec, Sep 15 2021
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+1,k). - Seiichi Manyama, Aug 03 2025
a(n) = 3^(2*n+1)*2^(-n-1) - binomial(2*n+1, n)*(hypergeom([1, -1-n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k). - Seiichi Manyama, Aug 07 2025

A049235 Sum of balls on the lawn for the s=3 tennis ball problem.

Original entry on oeis.org

0, 6, 75, 708, 5991, 47868, 369315, 2783448, 20631126, 151026498, 1094965524, 7878119760, 56330252412, 400703095284, 2838060684483, 20027058300144, 140874026880204, 988194254587242, 6915098239841331, 48285969880645908, 336521149274459979
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

The four sequences T_n, Y_n, A_n, S_n for s=2 are A000108, A000302, A000346, A031970, for s=3, A001764, A006256, A075045, this sequence, for s=4, A002293, A078995, A078999, A078516.
Cf. A079486.

Programs

  • Maple
    T := (n,s)->binomial(s*n,n)/((s-1)*n+1); Y := (n,s)->add(binomial(s*k,k)*binomial(s*(n-k),n-k),k=0..n); A := (n,s)->Y(n+1,s)/2-(1/2)*((2*s-3)*n+2*s-2)*T(n+1,s); S := (n,s)->(1/2)*(s*n^2+(3*s-1)*n+2*s)*T(n+1,s)-Y(n+1,s)/2;
    F := 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3);  G := t*(t-1)^2;   Ginv := RootOf(G-x,t);
    ogf := series(eval(F,t=Ginv), x=0, 20);
  • Mathematica
    a[n_] := a[n] = Switch[n, 0, 0, 1, 6, 2, 75, 3, 708, 4, 5991, _, -((1/(8*(2*(n-5)^2 + 25*(n-5) + 78)))*(-(531441*(n-5)^2* a[n-5]) + 196830*(n-5)^2*a[n-4] - 24057*(n-5)^2*a[n-3] + 1809*(n-5)^2*a[n-2] - 232*(n-5)^2*a[n-1] - 1594323*(n-5)*a[n-5] + 747954*(n-5)*a[n-4] - 120285*(n-5)*a[n-3] + 16362*(n-5)*a[n-2] - 2798*(n-5)*a[n-1] - 1180980*a[n-5] + 656100*a[n-4] - 131220*a[n-3] + 36825*a[n-2] - 8352*a[n-1]))];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 02 2023, after Robert Israel *)

Formula

a(n) is asymptotic to c*sqrt(n)*(27/4)^n with c=2.4... - Benoit Cloitre, Jan 26 2003, c = 81*sqrt(3/Pi)/32 = 2.4735502165085321... - Vaclav Kotesovec, Feb 07 2019
G.f.: F(G^(-1)(x)) where F = 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3) and G = t*(t-1)^2. - Mark van Hoeij, Oct 30 2011
D-finite with recurrence (531441*n^2 + 1594323*n + 1180980)*a(n) + (-196830*n^2 - 747954*n - 656100)*a(n + 1) + (24057*n^2 + 120285*n + 131220)*a(n + 2) + (-1809*n^2 - 16362*n - 36825)*a(n + 3) + (232*n^2 + 2798*n + 8352)*a(n + 4) + (-16*n^2 - 200*n - 624)*a(n + 5) = 0. - Robert Israel, Jun 20 2019

A385605 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+1,k).

Original entry on oeis.org

1, 7, 58, 502, 4436, 39687, 358024, 3249288, 29624796, 271080124, 2487835678, 22888216006, 211010997716, 1948830506578, 18026768864736, 166976297995452, 1548523206590364, 14376415735219572, 133599985919343400, 1242638966005222648, 11567295503871866536
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n+1, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(3*n+k,k).
a(n) = 3^(4*n+1)*2^(-3*n-1) - binomial(4*n+1, n)*(hypergeom([1, -1-3*n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((3-2*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 14 2025
G.f.: B(x)^2/(1 + (B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(12-5*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 16 2025
Showing 1-10 of 20 results. Next