cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A183161 Self-convolution equals A183160.

Original entry on oeis.org

1, 1, 5, 26, 145, 841, 5006, 30350, 186537, 1158685, 7258145, 45779420, 290399030, 1851032314, 11847434810, 76100034106, 490343021881, 3168174174105, 20520045125681, 133197288251330, 866293102078525, 5644234561103785
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2010

Keywords

Comments

Conjecture: a(n) is never congruent to 3 modulo 4; see A218622. - Paul D. Hanna, Nov 03 2012

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 26*x^3 + 145*x^4 + 841*x^5 + 5006*x^6 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 62*x^3 + 367*x^4 + 2232*x^5 + 13820*x^6 + 86662*x^7 +...+ A183160(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    a(n)=local(A2=sum(m=0,n,sum(k=0,m,binomial(m+k,m-k)*binomial(2*m-k,k))*x^m+x*O(x^n)));polcoeff(A2^(1/2),n)
    
  • PARI
    a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/sqrt(1-2*x*G^2-3*x^2*G^4), n) \\ Paul D. Hanna, Nov 03 2012
    
  • PARI
    A002426(n)=sum(k=0,n\2,binomial(n,2*k)*binomial(2*k,k))
    {a(n)=if(n==0,1,sum(k=0,n,A002426(k)*binomial(3*n-k,n-k)*2*k/(3*n-k)))} \\ Paul D. Hanna, Nov 04 2012
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/sqrt(1+3*x*G-5*x*G^2), n)
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2013

Formula

Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} C(n+k,n-k)*C(2*n-k,k) = A183160(n).
G.f.: A(x) = 1/sqrt(1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 03 2012
G.f.: A(x) = Sum_{n>=0} A002426(n) * x^n * G(x)^(2*n), where A002426 are the central trinomial coefficients and G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 03 2012
a(n) = Sum_{k=0..n} A002426(k) * C(3*n-k,n-k) * 2*k/(3*n-k) for n>0, where A002426 are the central trinomial coefficients: A002426(n) = Sum_{k=0..[n/2]} C(n,2*k)*C(2*k,k). - Paul D. Hanna, Nov 04 2012
G.f.: A(x) = 1/sqrt(1 + 3*x*G(x) - 5*x*G(x)^2), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Jun 16 2013
From Vaclav Kotesovec, Oct 05 2020: (Start)
Recurrence: 32*(n-1)*n*(2*n - 1)*(294*n^2 - 1253*n + 1310)*a(n) = 4*(n-1)*(62328*n^4 - 391468*n^3 + 870242*n^2 - 806673*n + 264534)*a(n-1) - 6*(132300*n^5 - 1169784*n^4 + 4019115*n^3 - 6676447*n^2 + 5328996*n - 1620540)*a(n-2) - 81*(n-2)*(3*n - 8)*(3*n - 7)*(294*n^2 - 665*n + 351)*a(n-3).
a(n) ~ 3^(3*n + 3/4) / (Gamma(1/4) * n^(3/4) * 2^(2*n + 3/2)). (End)

A085478 Triangle read by rows: T(n, k) = binomial(n + k, 2*k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 15, 7, 1, 1, 15, 35, 28, 9, 1, 1, 21, 70, 84, 45, 11, 1, 1, 28, 126, 210, 165, 66, 13, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 14 2003

Keywords

Comments

Coefficient array for Morgan-Voyce polynomial b(n,x). A053122 (unsigned) is the coefficient array for B(n,x). Reversal of A054142. - Paul Barry, Jan 19 2004
This triangle is formed from even-numbered rows of triangle A011973 read in reverse order. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k+1 peaks. T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k peaks at height >= 2. T(n,k) is the number of directed column-convex polyominoes of area n+1, having k+1 columns. - Emeric Deutsch, May 31 2004
Riordan array (1/(1-x), x/(1-x)^2). - Paul Barry, May 09 2005
The triangular matrix a(n,k) = (-1)^(n+k)*T(n,k) is the matrix inverse of A039599. - Philippe Deléham, May 26 2005
The n-th row gives absolute values of coefficients of reciprocal of g.f. of bottom-line of n-wave sequence. - Floor van Lamoen (fvlamoen(AT)planet.nl), Sep 24 2006
Unsigned version of A129818. - Philippe Deléham, Oct 25 2007
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k >=1 (height(alpha) = |Im(alpha)|) and of waist n (waist(alpha) = max(Im(alpha))). - Abdullahi Umar, Oct 02 2008
A085478 is jointly generated with A078812 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n>1, u(n,x) = u(n-1,x)+x*v(n-1)x and v(n,x) = u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Per Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle given by (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
T(n,k) is also the number of compositions (ordered partitions) of 2*n+1 into 2*k+1 parts which are all odd. Proof: The o.g.f. of column k, x^k/(1-x)^(2*k+1) for k >= 0, is the o.g.f. of the odd-indexed members of the sequence with o.g.f. (x/(1-x^2))^(2*k+1) (bisection, odd part). Thus T(n,k) is obtained from the sum of the multinomial numbers A048996 for the partitions of 2*n+1 into 2*k+1 parts, all of which are odd. E.g., T(3,1) = 3 + 3 from the numbers for the partitions [1,1,5] and [1,3,3], namely 3!/(2!*1!) and 3!/(1!*2!), respectively. The number triangle with the number of these partitions as entries is A152157. - Wolfdieter Lang, Jul 09 2012
The matrix elements of the inverse are T^(-1)(n,k) = (-1)^(n+k)*A039599(n,k). - R. J. Mathar, Mar 12 2013
T(n,k) = A258993(n+1,k) for k = 0..n-1. - Reinhard Zumkeller, Jun 22 2015
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the algebraic function F(x)*G(x)^n about 0, where F(x) = (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) and G(x) = ((1 + sqrt(1 + 4*x))/2)^2. For example, for n = 4, (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) * ((1 + sqrt(1 + 4*x))/2)^8 = (x^4 + 10*x^3 + 15*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 23 2018
Row n also gives the coefficients of the characteristc polynomial of the tridiagonal n X n matrix M_n given in A332602: Phi(n, x) := Det(M_n - x*1_n) = Sum_{k=0..n} T(n, k)*(-x)^k, for n >= 0, with Phi(0, x) := 1. - Wolfdieter Lang, Mar 25 2020
It appears that the largest root of the n-th degree polynomial is equal to the sum of the distinct diagonals of a (2*n+1)-gon including the edge, 1. The largest root of x^3 - 6*x^2 + 5*x - 1 is 5.048917... = the sum of (1 + 1.80193... + 2.24697...). Alternatively, the largest root of the n-th degree polynomial is equal to the square of sigma(2*n+1). Check: 5.048917... is the square of sigma(7), 2.24697.... Given N = 2*n+1, sigma(N) (N odd) can be defined as 1/(2*sin(Pi/(2*N))). Relating to the 9-gon, the largest root of x^4 - 10*x^3 + 15*x^2 - 7*x + 1 is 8.290859..., = the sum of (1 + 1.879385... + 2.532088... + 2.879385...), and is the square of sigma(9), 2.879385... Refer to A231187 for a further clarification of sigma(7). - Gary W. Adamson, Jun 28 2022
For n >=1, the n-th row is given by the coefficients of the minimal polynomial of -4*sin(Pi/(4*n + 2))^2. - Eric W. Weisstein, Jul 12 2023
Denoting this lower triangular array by L, then L * diag(binomial(2*k,k)^2) * transpose(L) is the LDU factorization of A143007, the square array of crystal ball sequences for the A_n X A_n lattices. - Peter Bala, Feb 06 2024
T(n, k) is the number of occurrences of the periodic substring (01)^k in the periodic string (01)^n (see Proposition 4.7 at page 7 in Fang). - Stefano Spezia, Jun 09 2024

Examples

			Triangle begins as:
  1;
  1    1;
  1    3    1;
  1    6    5    1;
  1   10   15    7    1;
  1   15   35   28    9    1;
  1   21   70   84   45   11    1;
  1   28  126  210  165   66   13    1;
  1   36  210  462  495  286   91   15    1;
  1   45  330  924 1287 1001  455  120   17    1;
  1   55  495 1716 3003 3003 1820  680  153   19    1;
...
From _Philippe Deléham_, Mar 26 2012: (Start)
(0, 1, 0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) begins:
  1
  0, 1
  0, 1,  1
  0, 1,  3,   1
  0, 1,  6,   5,   1
  0, 1, 10,  15,   7,   1
  0, 1, 15,  35,  28,   9,  1
  0, 1, 21,  70,  84,  45, 11,  1
  0, 1, 28, 126, 210, 165, 66, 13, 1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k, 2*k) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a085478 n k = a085478_tabl !! n !! k
    a085478_row n = a085478_tabl !! n
    a085478_tabl = zipWith (zipWith a007318) a051162_tabl a025581_tabl
    -- Reinhard Zumkeller, Jun 22 2015
    
  • Magma
    [Binomial(n+k, 2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    T := (n,k) -> binomial(n+k,2*k): seq(seq(T(n,k), k=0..n), n=0..11);
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A085478 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A078812 *) (*Clark Kimberling, Feb 25 2012 *)
    (* Second program *)
    Table[Binomial[n + k, 2 k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 01 2019 *)
    CoefficientList[Table[Fibonacci[2 n + 1, Sqrt[x]], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Jul 03 2023 *)
    Join[{{1}}, CoefficientList[Table[MinimalPolynomial[-4 Sin[Pi/(4 n + 2)]^2, x], {n, 20}], x]] (* Eric W. Weisstein, Jul 12 2023 *)
  • PARI
    T(n,k) = binomial(n+k,n-k)
    
  • Sage
    [[binomial(n+k,2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n, k) = (n+k)!/((n-k)!*(2*k)!).
G.f.: (1-z)/((1-z)^2-tz). - Emeric Deutsch, May 31 2004
Row sums are A001519 (Fibonacci(2n+1)). Diagonal sums are A011782. Binomial transform of A026729 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
T(n, 0) = 1, T(n, k) = 0 if n=0} T(n-1-j, k-1)*(j+1). T(0, 0) = 1, T(0, k) = 0 if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j). For the column k, g.f.: Sum_{n>=0} T(n, k)*x^n = (x^k) / (1-x)^(2*k+1). - Philippe Deléham, Feb 15 2004
Sum_{k=0..n} T(n,k)*x^(2*k) = A000012(n), A001519(n+1), A001653(n), A078922(n+1), A007805(n), A097835(n), A097315(n), A097838(n), A078988(n), A097841(n), A097727(n), A097843(n), A097730(n), A098244(n), A097733(n), A098247(n), A097736(n), A098250(n), A097739(n), A098253(n), A097742(n), A098256(n), A097767(n), A098259(n), A097770(n), A098262(n), A097773(n), A098292(n), A097776(n) for x=0,1,2,...,27,28 respectively. - Philippe Deléham, Dec 31 2007
T(2*n,n) = A005809(n). - Philippe Deléham, Sep 17 2009
A183160(n) = Sum_{k=0..n} T(n,k)*T(n,n-k). - Paul D. Hanna, Dec 27 2010
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 06 2012
O.g.f. for column k: x^k/(1-x)^(2*k+1), k >= 0. [See the o.g.f. of the triangle above, and a comment on compositions. - Wolfdieter Lang, Jul 09 2012]
E.g.f.: (2/sqrt(x + 4))*sinh((1/2)*t*sqrt(x + 4))*cosh((1/2)*t*sqrt(x)) = t + (1 + x)*t^3/3! + (1 + 3*x + x^2)*t^5/5! + (1 + 6*x + 5*x^2 + x^3)*t^7/7! + .... Cf. A091042. - Peter Bala, Jul 29 2013
T(n, k) = A065941(n+3*k, 4*k) = A108299(n+3*k, 4*k) = A194005(n+3*k, 4*k). - Johannes W. Meijer, Sep 05 2013
Sum_{k=0..n} (-1)^k*T(n,k)*A000108(k) = A000007(n) for n >= 0. - Werner Schulte, Jul 12 2017
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A001006(n) for n >= 0. - Werner Schulte, Jul 12 2017
From Peter Bala, Jun 26 2025: (Start)
The n-th row polynomial b(n, x) = (-1)^n * U(2*n, (i/2)*sqrt(x)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
b(n, x) = (-1)^n * Dir(n, -1 - x/2), where Dir(n, x) is the n-th row polynomial of the triangle A244419.
b(n, -1 - x) is the n-th row polynomial of A098493. (End)

A006256 a(n) = Sum_{k=0..n} binomial(3*k,k)*binomial(3*n-3*k,n-k).

Original entry on oeis.org

1, 6, 39, 258, 1719, 11496, 77052, 517194, 3475071, 23366598, 157206519, 1058119992, 7124428836, 47983020624, 323240752272, 2177956129818, 14677216121871, 98923498131762, 666819212874501, 4495342330033938, 30308036621747679, 204356509814519712
Offset: 0

Views

Author

Keywords

Comments

The right-hand sides of several of the "Ruehr identities". - N. J. A. Sloane, Feb 20 2020
Convolution of A005809 with itself. - Emeric Deutsch, May 22 2003

References

  • Allouche, J-P. "Two binomial identities of Ruehr Revisited." The American Mathematical Monthly 126.3 (2019): 217-225.
  • Alzer, Horst, and Helmut Prodinger. "On Ruehr's Identities." Ars Comb. 139 (2018): 247-254.
  • Bai, Mei, and Wenchang Chu. "Seven equivalent binomial sums." Discrete Mathematics 343.2 (2020): 111691.
  • M. Petkovsek et al., A=B, Peters, 1996, p. 165.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006256 n = a006256_list !! n
    a006256_list = f (tail a005809_list) [1] where
       f (x:xs) zs = (sum $ zipWith (*) zs a005809_list) : f xs (x : zs)
    -- Reinhard Zumkeller, Sep 21 2014
    
  • Magma
    [&+[Binomial(3*k, k) *Binomial(3*n-3*k, n-k): k in [0..n]]:n in  [0..22]]; // Vincenzo Librandi, Feb 21 2020
  • Maple
    a:= proc(n) option remember; `if`(n<2, 5*n+1,
          ((216*n^2-270*n+96) *a(n-1)
          -81*(3*n-2)*(3*n-4) *a(n-2)) /(n*(16*n-8)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 07 2012
  • Mathematica
    a[n_] := HypergeometricPFQ[{1/3, 2/3, 1/2-n, -n}, {1/2, 1/3-n, 2/3-n}, 1]*(3n)!/(n!*(2n)!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 20 2012 *)
    Table[Sum[Binomial[3k,k]Binomial[3n-3k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 23 2013 *)
  • PARI
    a(n)=sum(k=0,n, binomial(3*k,k)*binomial(3*n-3*k,n-k)) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-2)
    [simplify(a(n)) for n in range(20)] # Peter Luschny, May 19 2015
    

Formula

a(n) = (3/4)*(27/4)^n*(1+c/sqrt(n)+o(n^(-1/2))) where c = (2/3)*sqrt(1/(3*Pi)) = 0.217156671956853298... More generally, a(n, m) = sum(k=0, n, C(m*k,k) *C(m*(n-k),n-k)) is asymptotic to (1/2)*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A078995 for cases m=2 and 4. - Benoit Cloitre, Jan 26 2003, extended by Vaclav Kotesovec, Nov 06 2012
G.f.: 1/(1-3*z*g^2)^2, where g=g(z) is given by g=1+z*g^3, g(0)=1, i.e. (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
D-finite with recurrence: 6*(36*n^2-45*n+16)*a(n-1) - 81*(3*n-4)*(3*n-2)*a(n-2) - 8*n*(2*n-1)*a(n) = 0. - Vaclav Kotesovec, Oct 05 2012
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = sum(k=0, n, C(3*k+l,k)*C(3*(n-k)-l,n-k)) for every real number l.
a(n) = sum(k=0, n, 2^(n-k)*C(3n+1,k)).
a(n) = sum(k=0, n, 3^(n-k)*C(2n+k,k)). (End)
From Akalu Tefera, Sean Meehan, Michael Weselcouch, and Aklilu Zeleke, May 11 2013: (Start)
a(n) = sum(k=0, 2n, (-3)^k*C(3n - k, n)).
a(n) = sum(k=0, 2n, (-4)^k*C(3n + 1, 2n - k)).
a(n) = sum(k=0, n, 3^k*C(3n - k, 2n)).
a(n) = sum(k=0, n, 2^k*C(3n + 1, n - k)). (End)
a(n) = C(3*n+1,n)*Hyper2F1(1,-n,2*n+2,-2). - Peter Luschny, May 19 2015
a(n) = [x^n] 1/((1-3*x) * (1-x)^(2*n+1)). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025

A160906 Row sums of A159841.

Original entry on oeis.org

1, 5, 29, 176, 1093, 6885, 43796, 280600, 1807781, 11698223, 75973189, 494889092, 3231947596, 21153123932, 138712176296, 911137377456, 5993760282021, 39481335979779, 260377117268087, 1719026098532296, 11360252318843933, 75141910203168229, 497431016774189912
Offset: 0

Views

Author

R. J. Mathar, May 29 2009

Keywords

Crossrefs

Programs

  • Maple
    A160906 := proc(n) add( A159841(n,k), k=0..n) ; end:
    seq(A160906(n), n=0..20) ;
  • Mathematica
    Table[Sum[Binomial[3*n+1, 2*n+k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 25 2017 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n+1, 2*n+k+1)); \\ Michel Marcus, Oct 31 2017
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-1)
    [simplify(a(n)) for n in range(21)] # Peter Luschny, May 19 2015
    

Formula

a(n) = Sum_{k=0..n} A159841(n,k).
Conjecture: a(2n+1) = A075273(3n).
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],-1). - Peter Luschny, May 19 2015
Conjecture: 2*n*(2*n-1)*(5*n-4)*a(n) +(-295*n^3+451*n^2-130*n-24)*a(n-1) +24*(5*n+1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Jul 20 2016
a(n) = [x^n] 1/((1 - 2*x)*(1 - x)^(2*n+1)). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 3^(3*n + 3/2) / (sqrt(Pi*n) * 2^(2*n + 1)). - Vaclav Kotesovec, Oct 25 2017
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+k,k). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g*(6-g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 16 2025

A147855 G.f.: 1 / (1 + 4*x*G(x)^2 - 7*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 3, 22, 174, 1444, 12323, 107104, 942952, 8381596, 75053100, 676017962, 6118171326, 55591175956, 506805088026, 4633571685968, 42468065811884, 390071875757852, 3589637747968964, 33089300640166360, 305476314574338648, 2823932709938708824, 26137341654281261347
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 22*x^2 + 174*x^3 + 1444*x^4 + 12323*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 4*x*G(x)^2 - 7*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+k,n-k]*Binomial[2*n-k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+k, n-k)*binomial(2*n-k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(k, n-k)*binomial(4*n-k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+4*x*G^2-7*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-3*x*G^2-7*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(k, n-k) * C(4*n-k, k).
a(n) = Sum_{k=0..n} C(n+k, n-k) * C(3*n-k, k).
a(n) = Sum_{k=0..n} C(2*n+k, n-k) * C(2*n-k, k).
a(n) = Sum_{k=0..n} C(3*n+k, n-k) * C(n-k, k).
a(n) = Sum_{k=0..n} C(4*n+k, n-k) * C(-k, k).
G.f.: 1 / (1 - 3*x*G(x)^2 - 7*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+5/2)/(5*sqrt(Pi*n)*3^(3*n+1/2)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Apr 05 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(4*n-2*k-1,n-2*k).
a(n) = [x^n] 1/((1-x^2) * (1-x)^(3*n)). (End)
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-1+2*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 5*(B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A079589 a(n) = C(5*n+1,n).

Original entry on oeis.org

1, 6, 55, 560, 5985, 65780, 736281, 8347680, 95548245, 1101716330, 12777711870, 148902215280, 1742058970275, 20448884000160, 240719591939480, 2840671544105280, 33594090947249085, 398039194165652550, 4724081931321677925, 56151322242892212960, 668324943343021950370
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

a(n) is the number of paths from (0,0) to (5n,n) taking north and east steps while avoiding exactly 2 consecutive north steps. - Shanzhen Gao, Apr 15 2010

Crossrefs

Programs

  • Magma
    [Binomial(5*n+1, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
  • Maple
    seq(binomial(5*n+1,n),n=0..100); # Robert Israel, Aug 07 2014
  • Mathematica
    Table[Binomial[5n+1,n],{n,0,20}]  (* Harvey P. Dale, Jan 23 2011 *)

Formula

a(n) is asymptotic to c*(3125/256)^n/sqrt(n) with c=0.557.... [c = 5^(3/2)/(sqrt(Pi)*2^(7/2)) = 0.55753878629774... - Vaclav Kotesovec, Feb 14 2019 and Aug 20 2025]
8*n*(4*n+1)*(2*n-1)*(4*n-1)*a(n) -5*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Jul 17 2014
G.f.: hypergeom([2/5, 3/5, 4/5, 6/5], [1/2, 3/4, 5/4], (3125/256)*x). - Robert Israel, Aug 07 2014
a(n) = [x^n] 1/(1 - x)^(2*(2*n+1)). - Ilya Gutkovskiy, Oct 10 2017
From Seiichi Manyama, Aug 16 2025: (Start)
a(n) = Sum_{k=0..n} binomial(5*n-k,n-k).
G.f.: 1/(1 - x*g^3*(5+g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: g^2/(5-4*g) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 4*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)

A226705 G.f.: 1 / (1 + 12*x*G(x)^4 - 16*x*G^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

Original entry on oeis.org

1, 4, 48, 600, 7856, 105684, 1447392, 20075416, 281086416, 3964453368, 56240518128, 801624722232, 11470976280960, 164691196943212, 2371222443727584, 34224696393237360, 495036708728067088, 7173892793100898728, 104135761805147016096, 1513892435551302963792
Offset: 0

Views

Author

Paul D. Hanna, Jun 15 2013

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 48*x^2 + 600*x^3 + 7856*x^4 + 105684*x^5 +...
A related series is G(x) = 1 + x*G(x)^6, where
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
G(x)^4 = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
G(x)^5 = 1 + 5*x + 40*x^2 + 385*x^3 + 4095*x^4 + 46376*x^5 +...
such that A(x) = 1/(1 + 12*x*G(x)^4 - 16*x*G^5).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3*n+2*k,n-k]*Binomial[3*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1+12*x*G^4-16*x*G^5), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1-4*x*G^4-16*x^2*G^10), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(6*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(3*n +2*k, n-k)*binomial(3*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(6*n +2*k, n-k)*binomial(-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(6*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(5*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(4*n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(4*n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(5*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(6*n+2*k, n-k) * C(-2*k, k).
Self-convolution of A226706.
G.f.: 1 / (1 - 4*x*G(x)^4 - 16*x^2*G(x)^10) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
a(n) ~ 2^(6*n-2)*3^(6*n+3/2)/(5^(5*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(5*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(6*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (6-5*G(x))) where G(x) = 1+x*G(x)^6 is the g.f. of A002295. (End)
G.f.: B(x)^2/(1 + 4*(B(x)-1)/3), where B(x) is the g.f. of A004355. - Seiichi Manyama, Aug 15 2025

A226733 G.f.: 1 / (1 + 8*x*G(x)^2 - 10*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 2, 18, 142, 1186, 10152, 88414, 779508, 6936066, 62159224, 560238728, 5072970366, 46114086446, 420558296888, 3846232573236, 35261290343112, 323952686556354, 2981787128165592, 27491128592627800, 253835886034173848, 2346892194318851016, 21724880414632781472
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 142*x^3 + 1186*x^4 + 10152*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 8*x*G(x)^2 - 10*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+2*k,n-k]*Binomial[2*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+8*x*G^2-10*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-2*x*G^2-10*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+2*k, n-k)*binomial(2*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(4*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(4*n+2*k, n-k)*binomial(-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(4*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(4*n+2*k, n-k) * C(-2*k, k).
G.f.: 1 / (1 - 2*x*G(x)^2 - 10*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+3/2)/(3^(3*n+3/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 3*(B(x)-1)/2), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A371753 a(n) = Sum_{k=0..floor(n/2)} binomial(5*n-2*k-1,n-2*k).

Original entry on oeis.org

1, 4, 37, 376, 4013, 44064, 492871, 5585080, 63901421, 736575316, 8540549322, 99503540008, 1163910870767, 13660217796736, 160782910480936, 1897131524755896, 22433316399634669, 265775992115557076, 3154067508987675679, 37487016824453703920, 446148092364247390618
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Maple
    A371753 := proc(n)
        add( binomial(5*n-2*k-1,n-2*k),k=0..floor(n/2)) ;
    end proc:
    seq(A371753(n),n=0..50) ; # R. J. Mathar, Sep 27 2024
  • PARI
    a(n) = sum(k=0, n\2, binomial(5*n-2*k-1, n-2*k));

Formula

a(n) = [x^n] 1/((1-x^2) * (1-x)^(4*n)).
a(n) ~ 5^(5*n + 3/2) / (3 * sqrt(Pi*n) * 2^(8*n + 5/2)). - Vaclav Kotesovec, Apr 05 2024
Conjecture D-finite with recurrence +1024*n*(796184150374453*n -1374782084855770) *(4*n-3)*(2*n-1)*(4*n-1)*a(n) +64*(-4720591427354845074*n^5 +16046598674673412696*n^4 -14164434258362644374*n^3 -6132680339747354209*n^2 +16406971563067867560*n -7312237120275595200)*a(n-1) +40*(-4968388566264801507*n^5 +51044954667717039608*n^4 -218029351288077225930*n^3 +471970442274586326109*n^2 -511707487331990011785*n +221366817798624198360)*a(n-2) -25*(5*n-11) *(719005061479699*n -1438086256867727)*(5*n-9) *(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Sep 27 2024
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(4*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
G.f.: g^2/((-1+2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. (End)
G.f.: B(x)^2/(1 + 6*(B(x)-1)/5), where B(x) is the g.f. of A001449. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(-5+9*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 16 2025

A226751 G.f.: 1 / (1 + 6*x*G(x) - 7*x*G(x)^2), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 9, 48, 289, 1761, 10932, 68664, 435201, 2777763, 17829489, 114968052, 744178716, 4832624044, 31469746632, 205422018288, 1343734578561, 8806130111847, 57805893969531, 380013533789928, 2501507255441049, 16486378106441697, 108773240389894056
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 48*x^3 + 289*x^4 + 1761*x^5 + 10932*x^6 +...
A related series is G(x) = 1 + x*G(x)^3, where
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
such that A(x) = 1/(1 + 6*x*G(x) - 7*x*G(x)^2).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+2*k,n-k]*Binomial[2*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 17 2013 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(n+2*k, n-k)*binomial(2*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(3*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^3+x*O(x^n)); polcoeff(1/(1+6*x*G-7*x*G^2), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^3+x*O(x^n)); polcoeff(1/(1-x*G-7*x^2*G^4), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(-2*k, k).
G.f.: 1/(1 - x*G(x) - 7*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
a(n) ~ 3^(3*n+3/2)/(5*sqrt(Pi*n)*2^(2*n+1)). - Vaclav Kotesovec, Jun 17 2013
Conjecture: 18*n*(2*n-1)*(55*n-76)*a(n) +(-11605*n^3+28521*n^2-20870*n+4536)*a(n-1) -24*(55*n-21)*(3*n-4)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(2*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(2*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (3-2*G(x))) where G(x) = 1+x*G(x)^3 is the g.f. of A001764. (End)
G.f.: B(x)^2/(1 + 5*(B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025
Showing 1-10 of 19 results. Next