cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A079679 a(n) = a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) for m=6.

Original entry on oeis.org

1, 12, 168, 2424, 35400, 520236, 7674144, 113482584, 1681028136, 24932533800, 370144424376, 5499182587416, 81748907485248, 1215834858032820, 18090048027643200, 269246037610828656, 4008495234662771688, 59692297399976544120, 889090275714779739120, 13245013739104555683600
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

More generally : a(n,m)=sum(k=0,n,binomial(m*k,k)*binomial(m*(n-k),n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256, A078995 for cases m=2,3 and 4.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0,n,5^(n-k)*binomial(6*n+1,k));
    vector(30, n, a(n-1)) \\  Altug Alkan, Sep 30 2015

Formula

a(n) = 3/5*(46656/3125)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.388...
c = 8/(3*sqrt(15*Pi)) = 0.388461664210517... - Vaclav Kotesovec, May 25 2020
a(n) = Sum_{k=0..n} binomial(6*k+l,k)*binomial(6*(n-k)-l,n-k) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(6*n+1,k).
a(n) = Sum_{k=0..n} 6^(n-k) * binomial(5*n+k,k). (End)
G.f.: hypergeom([1/6, 1/3, 1/2, 2/3, 5/6],[1/5, 2/5, 3/5, 4/5],46656*x/3125)^2. - Mark van Hoeij, Apr 19 2013
a(n) = [x^n] 1/((1-6*x) * (1-x)^(5*n+1)). - Seiichi Manyama, Aug 03 2025
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} 6^k * (-5)^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
G.f.: g^2/(6-5*g)^2 where g = 1+x*g^6 is the g.f. of A002295. (End)

A147855 G.f.: 1 / (1 + 4*x*G(x)^2 - 7*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 3, 22, 174, 1444, 12323, 107104, 942952, 8381596, 75053100, 676017962, 6118171326, 55591175956, 506805088026, 4633571685968, 42468065811884, 390071875757852, 3589637747968964, 33089300640166360, 305476314574338648, 2823932709938708824, 26137341654281261347
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 22*x^2 + 174*x^3 + 1444*x^4 + 12323*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 4*x*G(x)^2 - 7*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+k,n-k]*Binomial[2*n-k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+k, n-k)*binomial(2*n-k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(k, n-k)*binomial(4*n-k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+4*x*G^2-7*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-3*x*G^2-7*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(k, n-k) * C(4*n-k, k).
a(n) = Sum_{k=0..n} C(n+k, n-k) * C(3*n-k, k).
a(n) = Sum_{k=0..n} C(2*n+k, n-k) * C(2*n-k, k).
a(n) = Sum_{k=0..n} C(3*n+k, n-k) * C(n-k, k).
a(n) = Sum_{k=0..n} C(4*n+k, n-k) * C(-k, k).
G.f.: 1 / (1 - 3*x*G(x)^2 - 7*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+5/2)/(5*sqrt(Pi*n)*3^(3*n+1/2)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Apr 05 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(4*n-2*k-1,n-2*k).
a(n) = [x^n] 1/((1-x^2) * (1-x)^(3*n)). (End)
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-1+2*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 5*(B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A226733 G.f.: 1 / (1 + 8*x*G(x)^2 - 10*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 2, 18, 142, 1186, 10152, 88414, 779508, 6936066, 62159224, 560238728, 5072970366, 46114086446, 420558296888, 3846232573236, 35261290343112, 323952686556354, 2981787128165592, 27491128592627800, 253835886034173848, 2346892194318851016, 21724880414632781472
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 142*x^3 + 1186*x^4 + 10152*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 8*x*G(x)^2 - 10*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+2*k,n-k]*Binomial[2*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+8*x*G^2-10*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-2*x*G^2-10*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+2*k, n-k)*binomial(2*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(4*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(4*n+2*k, n-k)*binomial(-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(4*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(4*n+2*k, n-k) * C(-2*k, k).
G.f.: 1 / (1 - 2*x*G(x)^2 - 10*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+3/2)/(3^(3*n+3/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 3*(B(x)-1)/2), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A226751 G.f.: 1 / (1 + 6*x*G(x) - 7*x*G(x)^2), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 9, 48, 289, 1761, 10932, 68664, 435201, 2777763, 17829489, 114968052, 744178716, 4832624044, 31469746632, 205422018288, 1343734578561, 8806130111847, 57805893969531, 380013533789928, 2501507255441049, 16486378106441697, 108773240389894056
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 48*x^3 + 289*x^4 + 1761*x^5 + 10932*x^6 +...
A related series is G(x) = 1 + x*G(x)^3, where
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
such that A(x) = 1/(1 + 6*x*G(x) - 7*x*G(x)^2).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+2*k,n-k]*Binomial[2*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 17 2013 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(n+2*k, n-k)*binomial(2*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(3*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^3+x*O(x^n)); polcoeff(1/(1+6*x*G-7*x*G^2), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^3+x*O(x^n)); polcoeff(1/(1-x*G-7*x^2*G^4), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(-2*k, k).
G.f.: 1/(1 - x*G(x) - 7*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
a(n) ~ 3^(3*n+3/2)/(5*sqrt(Pi*n)*2^(2*n+1)). - Vaclav Kotesovec, Jun 17 2013
Conjecture: 18*n*(2*n-1)*(55*n-76)*a(n) +(-11605*n^3+28521*n^2-20870*n+4536)*a(n-1) -24*(55*n-21)*(3*n-4)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(2*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(2*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (3-2*G(x))) where G(x) = 1+x*G(x)^3 is the g.f. of A001764. (End)
G.f.: B(x)^2/(1 + 5*(B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025

A387085 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*n+1,k).

Original entry on oeis.org

1, 0, 4, 8, 36, 120, 456, 1680, 6340, 23960, 91224, 348656, 1337896, 5149872, 19877904, 76907808, 298176516, 1158168792, 4505865144, 17555689008, 68490100536, 267518448912, 1046041377264, 4094231982048, 16039426479336, 62887835652720, 246761907761776, 968943740083040
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-3)^(n-k) * Binomial(2*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[(-3)^(n-k)*Binomial[2*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(2*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(2*n-k,n-k).
G.f.: 1/( 4*x - 1 + 2*sqrt(1 - 4*x) ).
G.f.: 1/(1 - 4*x*(-1+g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: g^2/((-2+3*g) * (2-g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: B(x)^2/(1 + 2*(B(x)-1)), where B(x) is the g.f. of A000984.
D-finite with recurrence 3*n*a(n) +2*(-4*n+3)*a(n-1) +8*(-2*n+1)*a(n-2)=0. - R. J. Mathar, Aug 19 2025

A226706 G.f.: 1 / sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

Original entry on oeis.org

1, 2, 22, 256, 3174, 40862, 539376, 7247448, 98684230, 1357638124, 18831752122, 262974273200, 3692853486768, 52102851020154, 738102882420440, 10492839572260176, 149623214762194182, 2139329701502229300, 30661862088900836964, 440404155129948147776
Offset: 0

Views

Author

Paul D. Hanna, Jun 15 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 22*x^2 + 256*x^3 + 3174*x^4 + 40862*x^5 +...
A related series is G(x) = 1 + x*G(x), which begins
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
where A(x) = 1/sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/sqrt(1+12*x*G^4-16*x*G^5), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} C(3*n+2*k,n-k)*C(3*n-2*k,k).
Self-convolution equals A226705.

A385497 a(n) = Sum_{k=0..n} binomial(6*n+1,k).

Original entry on oeis.org

1, 8, 92, 1160, 15276, 206368, 2835200, 39419864, 553000876, 7811733392, 110962066532, 1583318009160, 22677731944032, 325849065291056, 4694837606889424, 67803714186207280, 981265566082447276, 14227018304102548368, 206608052310739404392, 3004777578508008253808
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(6*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 18 2025
  • Mathematica
    Table[Sum[Binomial[6*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 18 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(6*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(6*n+1)/(1-x).
a(n) = [x^n] 1/((1-x)^(5*n+1) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(6*n-k,n-k).
G.f.: 1/(1 - 4*x*g^4*(3-g)) where g = 1+x*g^6 is the g.f. of A002295.
G.f.: g^2/((2-g) * (6-5*g)) where g = 1+x*g^6 is the g.f. of A002295.
G.f.: B(x)^2/(1 + 2*(B(x)-1)/3), where B(x) is the g.f. of A004355.
a(n) ~ 2^(6*n-1) * 3^(6*n + 3/2) / (sqrt(Pi*n) * 5^(5*n + 1/2)). - Vaclav Kotesovec, Aug 19 2025
D-finite with recurrence +5*n*(5*n-3) *(25275337086729240289198339046875*n +471647298106881091699147254457046) *(5*n-1)*(5*n-4)*(5*n-2)*a(n) +(78985428396028875903744809521484375*n^6 -559942234844855804767211877804090453801*n^5 +3587636672285250929619857349305543417315*n^4 -10153151347942687598200945831585305558855*n^3 +14794114656715293872778407292185015920550*n^2 -10846691360081598422810600143797325763664*n +3179147242764665659301361496311050364480)*a(n-1) +40*(916451705547792050816664342989042382392*n^6 -15754440652132350078674083937326518806004*n^5 +117614110896134855700514819789186651267682*n^4 -471111363407608954402735569277858473721059*n^3 +1053743992048348087929158710510276422876431*n^2 -1242809524683997363700671579060256757555078*n +603414490131980309336751304501155726403152) *a(n-2) +3072*(-950768355029313182341332806167821761828*n^6 +17097100921628721474237101055297828968024*n^5 -128090998271831890487248970509140383514230*n^4 +509544263618626898681417576914870842148685*n^3 -1132270964907780344616429736070172799129247*n^2 +1330655887974191637410201798934319046990726*n -645481184978535641217111809931780144149880) *a(n-3) +884736*(3*n-11) *(6*n-17) *(61801507754400081418308631750717123*n -123657551673181017806623428016627104) *(6*n-19)*(3*n-10)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Aug 26 2025

A386371 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 3, 31, 317, 3399, 37418, 419229, 4756104, 54463335, 628197809, 7287712566, 84942987198, 993941174829, 11668806723876, 137378189197112, 1621322803014672, 19175540677541991, 227217662222902443, 2696878158795639549, 32057403690640189635, 381573145993865438254
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-3)^(n-k) * Binomial(5*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[(-3)^(n-k)*Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(5*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(5*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(4*n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(5*n-k,n-k).
G.f.: 1/(1 - x*g^3*(-10+13*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: g^2/((-2+3*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 7*(B(x)-1)/5), where B(x) is the g.f. of A001449.
D-finite with recurrence 648*n*(135551509682187347695*n -244103380745409504343) *(4*n-1)*(2*n-1)*(4*n-3)*a(n) +(-33979500619583537984836075*n^5 +130803893690808003041848009*n^4 -168380151442376797602371231*n^3 +62069291513227826684567999*n^2 +49760069127090078338544954*n -39530305857276050670355320)*a(n-1) +40*(-108999332467309598098777*n^5 -28981701912184019189355*n^4 -1554974299825191814369159*n^3 +13581461461293413639358363*n^2 -28599284433109723900055776*n +18909354537435947334628944)*a(n-2) +211200*(5*n-11) *(5*n-9)*(28440609019752807*n +93502568692163852)*(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Aug 26 2025
Showing 1-8 of 8 results.