cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226705 G.f.: 1 / (1 + 12*x*G(x)^4 - 16*x*G^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

Original entry on oeis.org

1, 4, 48, 600, 7856, 105684, 1447392, 20075416, 281086416, 3964453368, 56240518128, 801624722232, 11470976280960, 164691196943212, 2371222443727584, 34224696393237360, 495036708728067088, 7173892793100898728, 104135761805147016096, 1513892435551302963792
Offset: 0

Views

Author

Paul D. Hanna, Jun 15 2013

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 48*x^2 + 600*x^3 + 7856*x^4 + 105684*x^5 +...
A related series is G(x) = 1 + x*G(x)^6, where
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
G(x)^4 = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
G(x)^5 = 1 + 5*x + 40*x^2 + 385*x^3 + 4095*x^4 + 46376*x^5 +...
such that A(x) = 1/(1 + 12*x*G(x)^4 - 16*x*G^5).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3*n+2*k,n-k]*Binomial[3*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1+12*x*G^4-16*x*G^5), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1-4*x*G^4-16*x^2*G^10), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(6*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(3*n +2*k, n-k)*binomial(3*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(6*n +2*k, n-k)*binomial(-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(6*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(5*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(4*n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(4*n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(5*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(6*n+2*k, n-k) * C(-2*k, k).
Self-convolution of A226706.
G.f.: 1 / (1 - 4*x*G(x)^4 - 16*x^2*G(x)^10) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
a(n) ~ 2^(6*n-2)*3^(6*n+3/2)/(5^(5*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(5*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(6*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (6-5*G(x))) where G(x) = 1+x*G(x)^6 is the g.f. of A002295. (End)
G.f.: B(x)^2/(1 + 4*(B(x)-1)/3), where B(x) is the g.f. of A004355. - Seiichi Manyama, Aug 15 2025

A387092 Expansion of B(x)/sqrt(1 + 8*(B(x)-1)/9), where B(x) is the g.f. of A169958.

Original entry on oeis.org

1, 5, 73, 1273, 23993, 472483, 9570669, 197720403, 4144499289, 87850211830, 1878702271039, 40466493877812, 876838997392189, 19095109351916182, 417622272948538767, 9167498552774475792, 201891862924784199321, 4458815817948146064915
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Sum[Binomial[9*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 8*(Sum[Binomial[9*n, n]*x^n, {n, 0, nmax}] - 1)/9], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)

Formula

Sum_{k=0..n} a(k) * a(n-k) = A387091(n).
G.f.: 1/sqrt(1 - x*g^7*(9+g)) where g = 1+x*g^9 is the g.f. of A062994.
G.f.: g/sqrt(9-8*g) where g = 1+x*g^9 is the g.f. of A062994.
a(n) ~ 3^(18*n + 3/2) / (Gamma(1/4) * n^(3/4) * 2^(24*n + 5/2)). - Vaclav Kotesovec, Aug 20 2025
Showing 1-2 of 2 results.