cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387086 Expansion of B(x)/sqrt(1 + 2*(B(x)-1)), where B(x) is the g.f. of A000984.

Original entry on oeis.org

1, 0, 2, 4, 16, 52, 188, 672, 2458, 9052, 33648, 125864, 473500, 1789632, 6791528, 25863568, 98796096, 378411332, 1452886052, 5590262688, 21551271916, 83228809640, 321933018272, 1247062996304, 4837152438556, 18785529571200, 73037938668632, 284268423472432
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[Binomial[2*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 2*(Sum[Binomial[2*n, n]*x^n, {n, 0, nmax}] - 1)], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(4*x-1+2*sqrt(1-4*x)))

Formula

Sum_{k=0..n} a(k) * a(n-k) = A387085(n).
G.f.: 1/sqrt( 4*x - 1 + 2*sqrt(1 - 4*x) ).
G.f.: 1/sqrt(1 - 4*x*(-1+g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: g/sqrt((-2+3*g) * (2-g)) where g = 1+x*g^2 is the g.f. of A000108.
a(n) ~ 2^(2*n - 1/2) / (Gamma(1/4) * n^(3/4)) * (1 - Gamma(1/4)^2/(16*Pi*sqrt(2*n))). - Vaclav Kotesovec, Aug 20 2025
D-finite with recurrence 3*n*(n-1)*a(n) -2*(n-1)*(10*n-17)*a(n-1) +4*(4*n^2-24*n+29)*a(n-2) +32*(n-2)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Aug 26 2025

A386371 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 3, 31, 317, 3399, 37418, 419229, 4756104, 54463335, 628197809, 7287712566, 84942987198, 993941174829, 11668806723876, 137378189197112, 1621322803014672, 19175540677541991, 227217662222902443, 2696878158795639549, 32057403690640189635, 381573145993865438254
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-3)^(n-k) * Binomial(5*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[(-3)^(n-k)*Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(5*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(5*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(4*n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(5*n-k,n-k).
G.f.: 1/(1 - x*g^3*(-10+13*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: g^2/((-2+3*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 7*(B(x)-1)/5), where B(x) is the g.f. of A001449.
D-finite with recurrence 648*n*(135551509682187347695*n -244103380745409504343) *(4*n-1)*(2*n-1)*(4*n-3)*a(n) +(-33979500619583537984836075*n^5 +130803893690808003041848009*n^4 -168380151442376797602371231*n^3 +62069291513227826684567999*n^2 +49760069127090078338544954*n -39530305857276050670355320)*a(n-1) +40*(-108999332467309598098777*n^5 -28981701912184019189355*n^4 -1554974299825191814369159*n^3 +13581461461293413639358363*n^2 -28599284433109723900055776*n +18909354537435947334628944)*a(n-2) +211200*(5*n-11) *(5*n-9)*(28440609019752807*n +93502568692163852)*(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Aug 26 2025
Showing 1-2 of 2 results.