cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A006256 a(n) = Sum_{k=0..n} binomial(3*k,k)*binomial(3*n-3*k,n-k).

Original entry on oeis.org

1, 6, 39, 258, 1719, 11496, 77052, 517194, 3475071, 23366598, 157206519, 1058119992, 7124428836, 47983020624, 323240752272, 2177956129818, 14677216121871, 98923498131762, 666819212874501, 4495342330033938, 30308036621747679, 204356509814519712
Offset: 0

Views

Author

Keywords

Comments

The right-hand sides of several of the "Ruehr identities". - N. J. A. Sloane, Feb 20 2020
Convolution of A005809 with itself. - Emeric Deutsch, May 22 2003

References

  • Allouche, J-P. "Two binomial identities of Ruehr Revisited." The American Mathematical Monthly 126.3 (2019): 217-225.
  • Alzer, Horst, and Helmut Prodinger. "On Ruehr's Identities." Ars Comb. 139 (2018): 247-254.
  • Bai, Mei, and Wenchang Chu. "Seven equivalent binomial sums." Discrete Mathematics 343.2 (2020): 111691.
  • M. Petkovsek et al., A=B, Peters, 1996, p. 165.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006256 n = a006256_list !! n
    a006256_list = f (tail a005809_list) [1] where
       f (x:xs) zs = (sum $ zipWith (*) zs a005809_list) : f xs (x : zs)
    -- Reinhard Zumkeller, Sep 21 2014
    
  • Magma
    [&+[Binomial(3*k, k) *Binomial(3*n-3*k, n-k): k in [0..n]]:n in  [0..22]]; // Vincenzo Librandi, Feb 21 2020
  • Maple
    a:= proc(n) option remember; `if`(n<2, 5*n+1,
          ((216*n^2-270*n+96) *a(n-1)
          -81*(3*n-2)*(3*n-4) *a(n-2)) /(n*(16*n-8)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 07 2012
  • Mathematica
    a[n_] := HypergeometricPFQ[{1/3, 2/3, 1/2-n, -n}, {1/2, 1/3-n, 2/3-n}, 1]*(3n)!/(n!*(2n)!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 20 2012 *)
    Table[Sum[Binomial[3k,k]Binomial[3n-3k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 23 2013 *)
  • PARI
    a(n)=sum(k=0,n, binomial(3*k,k)*binomial(3*n-3*k,n-k)) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-2)
    [simplify(a(n)) for n in range(20)] # Peter Luschny, May 19 2015
    

Formula

a(n) = (3/4)*(27/4)^n*(1+c/sqrt(n)+o(n^(-1/2))) where c = (2/3)*sqrt(1/(3*Pi)) = 0.217156671956853298... More generally, a(n, m) = sum(k=0, n, C(m*k,k) *C(m*(n-k),n-k)) is asymptotic to (1/2)*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A078995 for cases m=2 and 4. - Benoit Cloitre, Jan 26 2003, extended by Vaclav Kotesovec, Nov 06 2012
G.f.: 1/(1-3*z*g^2)^2, where g=g(z) is given by g=1+z*g^3, g(0)=1, i.e. (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
D-finite with recurrence: 6*(36*n^2-45*n+16)*a(n-1) - 81*(3*n-4)*(3*n-2)*a(n-2) - 8*n*(2*n-1)*a(n) = 0. - Vaclav Kotesovec, Oct 05 2012
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = sum(k=0, n, C(3*k+l,k)*C(3*(n-k)-l,n-k)) for every real number l.
a(n) = sum(k=0, n, 2^(n-k)*C(3n+1,k)).
a(n) = sum(k=0, n, 3^(n-k)*C(2n+k,k)). (End)
From Akalu Tefera, Sean Meehan, Michael Weselcouch, and Aklilu Zeleke, May 11 2013: (Start)
a(n) = sum(k=0, 2n, (-3)^k*C(3n - k, n)).
a(n) = sum(k=0, 2n, (-4)^k*C(3n + 1, 2n - k)).
a(n) = sum(k=0, n, 3^k*C(3n - k, 2n)).
a(n) = sum(k=0, n, 2^k*C(3n + 1, n - k)). (End)
a(n) = C(3*n+1,n)*Hyper2F1(1,-n,2*n+2,-2). - Peter Luschny, May 19 2015
a(n) = [x^n] 1/((1-3*x) * (1-x)^(2*n+1)). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025

A183160 a(n) = Sum_{k=0..n} C(n+k,n-k)*C(2*n-k,k).

Original entry on oeis.org

1, 2, 11, 62, 367, 2232, 13820, 86662, 548591, 3498146, 22436251, 144583496, 935394436, 6071718512, 39523955552, 257913792342, 1686627623151, 11050540084902, 72522925038257, 476669316338542, 3137209052543927, 20672732229560032, 136374124374593072, 900541325129687272
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2010

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 62*x^3 + 367*x^4 + 2232*x^5 +...
A(x)^(1/2) = 1 + x + 5*x^2 + 26*x^3 + 145*x^4 + 841*x^5 + 5006*x^6 +...+ A183161(n)*x^n +...
Given triangle A085478(n,k) = C(n+k,n-k), which begins:
  1;
  1,  1;
  1,  3,  1;
  1,  6,  5,  1;
  1, 10, 15,  7, 1;
  1, 15, 35, 28, 9, 1; ...
ILLUSTRATE formula a(n) = Sum_{k=0..n} A085478(n,k)*A085478(n,n-k):
a(2) = 11 = 1*1 + 3*3 + 1*1;
a(3) = 62 = 1*1 + 6*5 + 5*6 + 1*1;
a(4) = 367 = 1*1 + 10*7 + 15*15 + 7*10 + 1*1;
a(5) = 2232 = 1*1 + 15*9 + 35*28 + 28*35 + 9*15 + 1*1; ...
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+k, 2*k)*Binomial(2*n-k, k): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 22 2021
  • Mathematica
    Table[Sum[Binomial[n+k,n-k]Binomial[2n-k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 19 2011 *)
    Table[HypergeometricPFQ[{-n, -n, 1/2 -n, n+1}, {1/2, 1, -2*n}, 1], {n, 0, 25}] (* G. C. Greubel, Feb 22 2021 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n+k,n-k)*binomial(2*n-k,k))}
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/(1-2*x*G^2-3*x^2*G^4), n)} \\ Paul D. Hanna, Nov 03 2012
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/(1+3*x*G-5*x*G^2), n)} \\ Paul D. Hanna, Jun 16 2013
    for(n=0, 30, print1(a(n), ", "))
    
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],2)
    [simplify(a(n)) for n in range(26)] # Peter Luschny, May 19 2015
    

Formula

a(n) = Sum_{k=0..n} A085478(n,k)*A085478(n,n-k).
Self-convolution of A183161 (an integer sequence):
a(n) = Sum_{k=0..n} A183161(k)*A183161(n-k).
a(n) = Sum_{k=0..n} binomial(2*n+k,k) * cos((n+k)*Pi). - Arkadiusz Wesolowski, Apr 02 2012
Recurrence: 320*n*(2*n-1)*a(n) = 8*(346*n^2 + 79*n - 327)*a(n-1) + 6*(1688*n^2-6241*n+5981)*a(n-2) + 261*(3*n-7)*(3*n-5)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(3*n+3/2)/(2^(2*n+3)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
...
G.f.: A(x) = 1/(1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 03 2012
G.f.: A(x) = 1 + x*d/dx { log( G(x)^5/(1+x*G(x)^2) )/2 }, where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 04 2012
G.f.: A(x) = 1/(1 + 3*x*G(x) - 5*x*G(x)^2), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Jun 16 2013
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],2). - Peter Luschny, May 19 2015
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^(2*n)). - Ilya Gutkovskiy, Oct 25 2017
From G. C. Greubel, Feb 22 2021: (Start)
a(n) = Sum_{k=0..n} A171822(n, k).
a(n) = Hypergeometric 4F3([-n, -n, 1/2 -n, n+1], [1/2, 1, -2*n], 1). (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-2*k-1,n-2*k). - Seiichi Manyama, Apr 05 2024
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+1,k). - Seiichi Manyama, Aug 03 2025
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k).
G.f.: g^2/((-1+2*g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. (End)
G.f.: B(x)^2/(1 + 4*(B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025

A160906 Row sums of A159841.

Original entry on oeis.org

1, 5, 29, 176, 1093, 6885, 43796, 280600, 1807781, 11698223, 75973189, 494889092, 3231947596, 21153123932, 138712176296, 911137377456, 5993760282021, 39481335979779, 260377117268087, 1719026098532296, 11360252318843933, 75141910203168229, 497431016774189912
Offset: 0

Views

Author

R. J. Mathar, May 29 2009

Keywords

Crossrefs

Programs

  • Maple
    A160906 := proc(n) add( A159841(n,k), k=0..n) ; end:
    seq(A160906(n), n=0..20) ;
  • Mathematica
    Table[Sum[Binomial[3*n+1, 2*n+k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 25 2017 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n+1, 2*n+k+1)); \\ Michel Marcus, Oct 31 2017
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-1)
    [simplify(a(n)) for n in range(21)] # Peter Luschny, May 19 2015
    

Formula

a(n) = Sum_{k=0..n} A159841(n,k).
Conjecture: a(2n+1) = A075273(3n).
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],-1). - Peter Luschny, May 19 2015
Conjecture: 2*n*(2*n-1)*(5*n-4)*a(n) +(-295*n^3+451*n^2-130*n-24)*a(n-1) +24*(5*n+1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Jul 20 2016
a(n) = [x^n] 1/((1 - 2*x)*(1 - x)^(2*n+1)). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 3^(3*n + 3/2) / (sqrt(Pi*n) * 2^(2*n + 1)). - Vaclav Kotesovec, Oct 25 2017
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+k,k). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g*(6-g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 16 2025

A226705 G.f.: 1 / (1 + 12*x*G(x)^4 - 16*x*G^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

Original entry on oeis.org

1, 4, 48, 600, 7856, 105684, 1447392, 20075416, 281086416, 3964453368, 56240518128, 801624722232, 11470976280960, 164691196943212, 2371222443727584, 34224696393237360, 495036708728067088, 7173892793100898728, 104135761805147016096, 1513892435551302963792
Offset: 0

Views

Author

Paul D. Hanna, Jun 15 2013

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 48*x^2 + 600*x^3 + 7856*x^4 + 105684*x^5 +...
A related series is G(x) = 1 + x*G(x)^6, where
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
G(x)^4 = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
G(x)^5 = 1 + 5*x + 40*x^2 + 385*x^3 + 4095*x^4 + 46376*x^5 +...
such that A(x) = 1/(1 + 12*x*G(x)^4 - 16*x*G^5).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3*n+2*k,n-k]*Binomial[3*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1+12*x*G^4-16*x*G^5), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1-4*x*G^4-16*x^2*G^10), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(6*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(3*n +2*k, n-k)*binomial(3*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(6*n +2*k, n-k)*binomial(-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(6*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(5*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(4*n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(4*n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(5*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(6*n+2*k, n-k) * C(-2*k, k).
Self-convolution of A226706.
G.f.: 1 / (1 - 4*x*G(x)^4 - 16*x^2*G(x)^10) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
a(n) ~ 2^(6*n-2)*3^(6*n+3/2)/(5^(5*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(5*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(6*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (6-5*G(x))) where G(x) = 1+x*G(x)^6 is the g.f. of A002295. (End)
G.f.: B(x)^2/(1 + 4*(B(x)-1)/3), where B(x) is the g.f. of A004355. - Seiichi Manyama, Aug 15 2025

A387085 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*n+1,k).

Original entry on oeis.org

1, 0, 4, 8, 36, 120, 456, 1680, 6340, 23960, 91224, 348656, 1337896, 5149872, 19877904, 76907808, 298176516, 1158168792, 4505865144, 17555689008, 68490100536, 267518448912, 1046041377264, 4094231982048, 16039426479336, 62887835652720, 246761907761776, 968943740083040
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-3)^(n-k) * Binomial(2*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[(-3)^(n-k)*Binomial[2*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(2*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(2*n-k,n-k).
G.f.: 1/( 4*x - 1 + 2*sqrt(1 - 4*x) ).
G.f.: 1/(1 - 4*x*(-1+g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: g^2/((-2+3*g) * (2-g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: B(x)^2/(1 + 2*(B(x)-1)), where B(x) is the g.f. of A000984.
D-finite with recurrence 3*n*a(n) +2*(-4*n+3)*a(n-1) +8*(-2*n+1)*a(n-2)=0. - R. J. Mathar, Aug 19 2025

A386371 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 3, 31, 317, 3399, 37418, 419229, 4756104, 54463335, 628197809, 7287712566, 84942987198, 993941174829, 11668806723876, 137378189197112, 1621322803014672, 19175540677541991, 227217662222902443, 2696878158795639549, 32057403690640189635, 381573145993865438254
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-3)^(n-k) * Binomial(5*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[(-3)^(n-k)*Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(5*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(5*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(4*n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(5*n-k,n-k).
G.f.: 1/(1 - x*g^3*(-10+13*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: g^2/((-2+3*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 7*(B(x)-1)/5), where B(x) is the g.f. of A001449.
D-finite with recurrence 648*n*(135551509682187347695*n -244103380745409504343) *(4*n-1)*(2*n-1)*(4*n-3)*a(n) +(-33979500619583537984836075*n^5 +130803893690808003041848009*n^4 -168380151442376797602371231*n^3 +62069291513227826684567999*n^2 +49760069127090078338544954*n -39530305857276050670355320)*a(n-1) +40*(-108999332467309598098777*n^5 -28981701912184019189355*n^4 -1554974299825191814369159*n^3 +13581461461293413639358363*n^2 -28599284433109723900055776*n +18909354537435947334628944)*a(n-2) +211200*(5*n-11) *(5*n-9)*(28440609019752807*n +93502568692163852)*(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Aug 26 2025
Showing 1-6 of 6 results.