cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A183160 a(n) = Sum_{k=0..n} C(n+k,n-k)*C(2*n-k,k).

Original entry on oeis.org

1, 2, 11, 62, 367, 2232, 13820, 86662, 548591, 3498146, 22436251, 144583496, 935394436, 6071718512, 39523955552, 257913792342, 1686627623151, 11050540084902, 72522925038257, 476669316338542, 3137209052543927, 20672732229560032, 136374124374593072, 900541325129687272
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2010

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 62*x^3 + 367*x^4 + 2232*x^5 +...
A(x)^(1/2) = 1 + x + 5*x^2 + 26*x^3 + 145*x^4 + 841*x^5 + 5006*x^6 +...+ A183161(n)*x^n +...
Given triangle A085478(n,k) = C(n+k,n-k), which begins:
  1;
  1,  1;
  1,  3,  1;
  1,  6,  5,  1;
  1, 10, 15,  7, 1;
  1, 15, 35, 28, 9, 1; ...
ILLUSTRATE formula a(n) = Sum_{k=0..n} A085478(n,k)*A085478(n,n-k):
a(2) = 11 = 1*1 + 3*3 + 1*1;
a(3) = 62 = 1*1 + 6*5 + 5*6 + 1*1;
a(4) = 367 = 1*1 + 10*7 + 15*15 + 7*10 + 1*1;
a(5) = 2232 = 1*1 + 15*9 + 35*28 + 28*35 + 9*15 + 1*1; ...
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+k, 2*k)*Binomial(2*n-k, k): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 22 2021
  • Mathematica
    Table[Sum[Binomial[n+k,n-k]Binomial[2n-k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 19 2011 *)
    Table[HypergeometricPFQ[{-n, -n, 1/2 -n, n+1}, {1/2, 1, -2*n}, 1], {n, 0, 25}] (* G. C. Greubel, Feb 22 2021 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n+k,n-k)*binomial(2*n-k,k))}
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/(1-2*x*G^2-3*x^2*G^4), n)} \\ Paul D. Hanna, Nov 03 2012
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/(1+3*x*G-5*x*G^2), n)} \\ Paul D. Hanna, Jun 16 2013
    for(n=0, 30, print1(a(n), ", "))
    
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],2)
    [simplify(a(n)) for n in range(26)] # Peter Luschny, May 19 2015
    

Formula

a(n) = Sum_{k=0..n} A085478(n,k)*A085478(n,n-k).
Self-convolution of A183161 (an integer sequence):
a(n) = Sum_{k=0..n} A183161(k)*A183161(n-k).
a(n) = Sum_{k=0..n} binomial(2*n+k,k) * cos((n+k)*Pi). - Arkadiusz Wesolowski, Apr 02 2012
Recurrence: 320*n*(2*n-1)*a(n) = 8*(346*n^2 + 79*n - 327)*a(n-1) + 6*(1688*n^2-6241*n+5981)*a(n-2) + 261*(3*n-7)*(3*n-5)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(3*n+3/2)/(2^(2*n+3)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
...
G.f.: A(x) = 1/(1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 03 2012
G.f.: A(x) = 1 + x*d/dx { log( G(x)^5/(1+x*G(x)^2) )/2 }, where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 04 2012
G.f.: A(x) = 1/(1 + 3*x*G(x) - 5*x*G(x)^2), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Jun 16 2013
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],2). - Peter Luschny, May 19 2015
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^(2*n)). - Ilya Gutkovskiy, Oct 25 2017
From G. C. Greubel, Feb 22 2021: (Start)
a(n) = Sum_{k=0..n} A171822(n, k).
a(n) = Hypergeometric 4F3([-n, -n, 1/2 -n, n+1], [1/2, 1, -2*n], 1). (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-2*k-1,n-2*k). - Seiichi Manyama, Apr 05 2024
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+1,k). - Seiichi Manyama, Aug 03 2025
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k).
G.f.: g^2/((-1+2*g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. (End)
G.f.: B(x)^2/(1 + 4*(B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025

A078995 a(n) = Sum_{k=0..n} C(4*k,k)*C(4*(n-k),n-k).

Original entry on oeis.org

1, 8, 72, 664, 6184, 57888, 543544, 5113872, 48180456, 454396000, 4288773152, 40503496536, 382701222296, 3617396099936, 34203591636048, 323492394385824, 3060238763412072, 28955508198895584, 274018698082833760, 2593539713410178528, 24550565251665845664
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Crossrefs

See A049235 for more information.

Programs

  • Maple
    series(eval(g/(3*g-4), g=RootOf(g = 1+x*g^4,g))^2, x=0, 30); # Mark van Hoeij, May 06 2013
  • Mathematica
    Table[Sum[Binomial[4*k, k]*Binomial[4*(n - k), n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*k, k)*binomial(4*(n-k), n-k)); \\ Michel Marcus, May 09 2020

Formula

a(n) = 2/3*(256/27)^n*(1+c/sqrt(n)+o(n^-1/2)) where c = 2/3*sqrt(2/(3*Pi)) = 0.307105910641187... More generally, a(n, m)=sum(k=0, n, binomial(m*k, k)*binomial(m*(n-k), n-k)) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n. See A000302, A006256 for cases m=2 and 3. - Benoit Cloitre, Jan 26 2003, corrected and extended by Vaclav Kotesovec, Nov 06 2012
243*n*(8*n - 17)*(3*n - 1)*(3*n - 4)*(3*n - 2)*(3*n - 5)*a(n) = 72*(3*n - 5)*(3*n - 4)*(6912*n^4 - 33120*n^3 + 58256*n^2 - 47798*n + 15309)*a(n - 1) - 3072*(2*n - 3)*(6912*n^5 - 55008*n^4 + 175696*n^3 - 282180*n^2 + 227825*n - 73710)*a(n - 2) + 262144*(n - 2)*(4*n - 7)*(2*n - 3)*(2*n - 5)*(4*n - 9)*(8*n - 9)*a(n - 3). - Vladeta Jovovic, Jul 16 2004
Shorter recurrence: 81*n*(3*n-2)*(3*n-1)*(8*n-11)*a(n) = 24*(4608*n^4-14400*n^3+15776*n^2-7346*n+1215)*a(n-1) - 2048*(2*n-3)*(4*n-5)*(4*n-3)*(8*n-3)*a(n-2). - Vaclav Kotesovec, Nov 06 2012
a(n) = Sum_{k=0..n} binomial(4*k+l,k) * binomial(4*(n-k)-l,n-k) for every real number l. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(3*n+k,k). (End)
G.f.: g^2/(3*g-4)^2 where g=ogf(A002293) satisfies g = 1+x*g^4. - Mark van Hoeij, May 06 2013
a(n) = [x^n] 1/((1-4*x) * (1-x)^(3*n+1)). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 15 2025

A386811 a(n) = Sum_{k=0..n} binomial(4*n+1,k).

Original entry on oeis.org

1, 6, 46, 378, 3214, 27896, 245506, 2182396, 19548046, 176142312, 1594831736, 14497410186, 132224930146, 1209397179048, 11088872706188, 101890087382168, 937973964234638, 8649109175873288, 79872298511230120, 738583466508887304, 6837944227813170424
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(4*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
  • Mathematica
    Table[Sum[Binomial[4*n+1,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n+1, k));
    

Formula

a(n) = [x^n] 1/((1-2*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n+k,k).
D-finite with recurrence +645*n*(3*n-1)*(3*n-2)*a(n) +8*(-56722*n^3+213090*n^2-305978*n+150255)*a(n-1) +128*(62908*n^3-282348*n^2+385070*n-126735)*a(n-2) +12288*(-2486*n^3+8918*n^2+758*n-18935)*a(n-3) -2949120*(2*n-7)*(4*n-13)*(4*n-11)*a(n-4)=0. - R. J. Mathar, Aug 03 2025
a(n) = 2^(4*n+1) - binomial(4*n+1, n)*(hypergeom([1, -1-3*n], [1+n], -1) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 07 2025
a(n) ~ 2^(8*n + 3/2) / (sqrt(Pi*n) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Aug 07 2025
G.f.: g^2/((2-g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/2), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(8-2*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 16 2025

A226705 G.f.: 1 / (1 + 12*x*G(x)^4 - 16*x*G^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

Original entry on oeis.org

1, 4, 48, 600, 7856, 105684, 1447392, 20075416, 281086416, 3964453368, 56240518128, 801624722232, 11470976280960, 164691196943212, 2371222443727584, 34224696393237360, 495036708728067088, 7173892793100898728, 104135761805147016096, 1513892435551302963792
Offset: 0

Views

Author

Paul D. Hanna, Jun 15 2013

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 48*x^2 + 600*x^3 + 7856*x^4 + 105684*x^5 +...
A related series is G(x) = 1 + x*G(x)^6, where
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
G(x)^4 = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
G(x)^5 = 1 + 5*x + 40*x^2 + 385*x^3 + 4095*x^4 + 46376*x^5 +...
such that A(x) = 1/(1 + 12*x*G(x)^4 - 16*x*G^5).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3*n+2*k,n-k]*Binomial[3*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1+12*x*G^4-16*x*G^5), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/(1-4*x*G^4-16*x^2*G^10), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(6*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(3*n +2*k, n-k)*binomial(3*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(6*n +2*k, n-k)*binomial(-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(6*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(5*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(4*n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(4*n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(5*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(6*n+2*k, n-k) * C(-2*k, k).
Self-convolution of A226706.
G.f.: 1 / (1 - 4*x*G(x)^4 - 16*x^2*G(x)^10) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
a(n) ~ 2^(6*n-2)*3^(6*n+3/2)/(5^(5*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(5*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(6*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(6*n+1,k) * binomial(6*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (6-5*G(x))) where G(x) = 1+x*G(x)^6 is the g.f. of A002295. (End)
G.f.: B(x)^2/(1 + 4*(B(x)-1)/3), where B(x) is the g.f. of A004355. - Seiichi Manyama, Aug 15 2025

A226733 G.f.: 1 / (1 + 8*x*G(x)^2 - 10*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 2, 18, 142, 1186, 10152, 88414, 779508, 6936066, 62159224, 560238728, 5072970366, 46114086446, 420558296888, 3846232573236, 35261290343112, 323952686556354, 2981787128165592, 27491128592627800, 253835886034173848, 2346892194318851016, 21724880414632781472
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 142*x^3 + 1186*x^4 + 10152*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 8*x*G(x)^2 - 10*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+2*k,n-k]*Binomial[2*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 16 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+8*x*G^2-10*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-2*x*G^2-10*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+2*k, n-k)*binomial(2*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(4*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(4*n+2*k, n-k)*binomial(-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(4*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(4*n+2*k, n-k) * C(-2*k, k).
G.f.: 1 / (1 - 2*x*G(x)^2 - 10*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+3/2)/(3^(3*n+3/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 16 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 3*(B(x)-1)/2), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A371753 a(n) = Sum_{k=0..floor(n/2)} binomial(5*n-2*k-1,n-2*k).

Original entry on oeis.org

1, 4, 37, 376, 4013, 44064, 492871, 5585080, 63901421, 736575316, 8540549322, 99503540008, 1163910870767, 13660217796736, 160782910480936, 1897131524755896, 22433316399634669, 265775992115557076, 3154067508987675679, 37487016824453703920, 446148092364247390618
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Maple
    A371753 := proc(n)
        add( binomial(5*n-2*k-1,n-2*k),k=0..floor(n/2)) ;
    end proc:
    seq(A371753(n),n=0..50) ; # R. J. Mathar, Sep 27 2024
  • PARI
    a(n) = sum(k=0, n\2, binomial(5*n-2*k-1, n-2*k));

Formula

a(n) = [x^n] 1/((1-x^2) * (1-x)^(4*n)).
a(n) ~ 5^(5*n + 3/2) / (3 * sqrt(Pi*n) * 2^(8*n + 5/2)). - Vaclav Kotesovec, Apr 05 2024
Conjecture D-finite with recurrence +1024*n*(796184150374453*n -1374782084855770) *(4*n-3)*(2*n-1)*(4*n-1)*a(n) +64*(-4720591427354845074*n^5 +16046598674673412696*n^4 -14164434258362644374*n^3 -6132680339747354209*n^2 +16406971563067867560*n -7312237120275595200)*a(n-1) +40*(-4968388566264801507*n^5 +51044954667717039608*n^4 -218029351288077225930*n^3 +471970442274586326109*n^2 -511707487331990011785*n +221366817798624198360)*a(n-2) -25*(5*n-11) *(719005061479699*n -1438086256867727)*(5*n-9) *(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Sep 27 2024
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(4*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
G.f.: g^2/((-1+2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. (End)
G.f.: B(x)^2/(1 + 6*(B(x)-1)/5), where B(x) is the g.f. of A001449. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(-5+9*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 16 2025

A385605 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+1,k).

Original entry on oeis.org

1, 7, 58, 502, 4436, 39687, 358024, 3249288, 29624796, 271080124, 2487835678, 22888216006, 211010997716, 1948830506578, 18026768864736, 166976297995452, 1548523206590364, 14376415735219572, 133599985919343400, 1242638966005222648, 11567295503871866536
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n+1, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(3*n+k,k).
a(n) = 3^(4*n+1)*2^(-3*n-1) - binomial(4*n+1, n)*(hypergeom([1, -1-3*n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((3-2*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 14 2025
G.f.: B(x)^2/(1 + (B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(12-5*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 16 2025

A226751 G.f.: 1 / (1 + 6*x*G(x) - 7*x*G(x)^2), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 9, 48, 289, 1761, 10932, 68664, 435201, 2777763, 17829489, 114968052, 744178716, 4832624044, 31469746632, 205422018288, 1343734578561, 8806130111847, 57805893969531, 380013533789928, 2501507255441049, 16486378106441697, 108773240389894056
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 48*x^3 + 289*x^4 + 1761*x^5 + 10932*x^6 +...
A related series is G(x) = 1 + x*G(x)^3, where
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
such that A(x) = 1/(1 + 6*x*G(x) - 7*x*G(x)^2).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+2*k,n-k]*Binomial[2*n-2*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 17 2013 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(n+2*k, n-k)*binomial(2*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, n-k)*binomial(3*n-2*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^3+x*O(x^n)); polcoeff(1/(1+6*x*G-7*x*G^2), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^3+x*O(x^n)); polcoeff(1/(1-x*G-7*x^2*G^4), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(2*k, n-k) * C(3*n-2*k, k).
a(n) = Sum_{k=0..n} C(n+2*k, n-k) * C(2*n-2*k, k).
a(n) = Sum_{k=0..n} C(2*n+2*k, n-k) * C(n-2*k, k).
a(n) = Sum_{k=0..n} C(3*n+2*k, n-k) * C(-2*k, k).
G.f.: 1/(1 - x*G(x) - 7*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
a(n) ~ 3^(3*n+3/2)/(5*sqrt(Pi*n)*2^(2*n+1)). - Vaclav Kotesovec, Jun 17 2013
Conjecture: 18*n*(2*n-1)*(55*n-76)*a(n) +(-11605*n^3+28521*n^2-20870*n+4536)*a(n-1) -24*(55*n-21)*(3*n-4)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+2*x) * (1-x)^(2*n+1)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n+1,k).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(2*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k).
G.f.: G(x)^2/((-2+3*G(x)) * (3-2*G(x))) where G(x) = 1+x*G(x)^3 is the g.f. of A001764. (End)
G.f.: B(x)^2/(1 + 5*(B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025

A226761 G.f.: 1 / (1 + 12*x*G(x)^2 - 13*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 16, 118, 1004, 8601, 75076, 662796, 5903676, 52949332, 477533356, 4326309406, 39343725716, 358943047438, 3283745710968, 30112624408488, 276715616909148, 2547523969430508, 23491659440021920, 216942761366305144, 2006084011596742384, 18572529488934397689
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 16*x^2 + 118*x^3 + 1004*x^4 + 8601*x^5 +...
A related series is G(x) = 1 + x*G(x)^4, where
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 + 32890*x^6 +...
such that A(x) = 1/(1 + 12*x*G(x)^2 - 13*x*G(x)^3).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n+3*k,n-k]*Binomial[2*n-3*k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 17 2013 *)
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1+12*x*G^2-13*x*G^3), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1+x); for(i=0, n, G=1+x*G^4+x*O(x^n)); polcoeff(1/(1-x*G^2-13*x^2*G^6), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(2*n+3*k, n-k)*binomial(2*n-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(3*k, n-k)*binomial(4*n-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(4*n+3*k, n-k)*binomial(-3*k, k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n} C(3*k, n-k) * C(4*n-3*k, k).
a(n) = Sum_{k=0..n} C(n+3*k, n-k) * C(3*n-3*k, k).
a(n) = Sum_{k=0..n} C(2*n+3*k, n-k) * C(2*n-3*k, k).
a(n) = Sum_{k=0..n} C(3*n+3*k, n-k) * C(n-3*k, k).
a(n) = Sum_{k=0..n} C(4*n+3*k, n-k) * C(-3*k, k).
G.f.: 1 / (1 - x*G(x)^2 - 13*x^2*G(x)^6) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ 2^(8*n+5/2)/(7*3^(3*n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 17 2013
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = [x^n] 1/((1+3*x) * (1-x)^(3*n+1)).
a(n) = Sum_{k=0..n} (-4)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n+k,k). (End)
From Seiichi Manyama, Aug 14 2025: (Start)
a(n) = Sum_{k=0..n} (-3)^k * 4^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).
G.f.: G(x)^2/((-3+4*G(x)) * (4-3*G(x))) where G(x) = 1+x*G(x)^4 is the g.f. of A002293. (End)
G.f.: B(x)^2/(1 + 7*(B(x)-1)/4), where B(x) is the g.f. of A005810. - Seiichi Manyama, Aug 15 2025

A371771 a(n) = Sum_{k=0..floor(n/3)} binomial(4*n-3*k-1,n-3*k).

Original entry on oeis.org

1, 3, 21, 166, 1377, 11748, 102088, 898677, 7987305, 71517307, 644134026, 5829345492, 52964836184, 482846377185, 4414405051413, 40458397722306, 371605426607673, 3419639400458316, 31521758873514301, 291000881055737811, 2690082750919841442
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(4*n-3*k-1,n-3*k),k=0..n/3) end proc:
    map(f, [$0..30]); # Robert Israel, Feb 28 2025
  • PARI
    a(n) = sum(k=0, n\3, binomial(4*n-3*k-1, n-3*k));

Formula

a(n) = [x^n] 1/((1-x^3) * (1-x)^(3*n)).
a(n) = binomial(4*n-1, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [(1-4*n)/3, 2*(1-2*n)/3, 1-4*n/3], 1). - Stefano Spezia, Apr 06 2024
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: 81*n*(3*n - 2)*(3*n - 1)*(9037*n^4 - 61391*n^3 + 154035*n^2 - 169317*n + 68836)*a(n) = 27*(2394805*n^7 - 19820156*n^6 + 66654684*n^5 - 117198990*n^4 + 115250735*n^3 - 62650734*n^2 + 17209736*n - 1814400)*a(n-1) - 3*(7021749*n^7 - 58192764*n^6 + 196050236*n^5 - 345531070*n^4 + 340849311*n^3 - 186035886*n^2 + 51353864*n - 5443200)*a(n-2) + 8*(2*n - 3)*(4*n - 9)*(4*n - 7)*(9037*n^4 - 25243*n^3 + 24084*n^2 - 9272*n + 1200)*a(n-3).
a(n) ~ 2^(8*n + 9/2) / (7 * sqrt(Pi*n) * 3^(3*n + 3/2)). (End)
Showing 1-10 of 11 results. Next