A386812 a(n) = Sum_{k=0..n} binomial(5*n+1,k).
1, 7, 67, 697, 7547, 83682, 942649, 10739176, 123388763, 1427090845, 16593192942, 193774331494, 2271115189673, 26700463884244, 314735943548632, 3718522618187472, 44021808206431579, 522080025971331983, 6201449551502245321, 73767447652621434695, 878599223738760686422
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Magma
[&+[Binomial(5*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
-
Mathematica
Table[Sum[Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 21 2025 *)
-
PARI
a(n) = sum(k=0, n, binomial(5*n+1, k));
Formula
a(n) = [x^n] 1/((1-2*x) * (1-x)^(4*n+1)).
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+k,k).
D-finite with recurrence 8*n*(2754528070303487*n -4672004545621835)*(4*n-3)*(2*n-1) *(4*n-1)*a(n) +(-5828620079131711179*n^5 -135826272187971586019*n^4 +779361612339655552281*n^3 -1570139520911413863589*n^2 +1419656431480813021170*n -487668485184225269400)*a(n-1) +40*(-21123668262204329085*n^5 +243394620512022153401*n^4 -982249084763267479011*n^3 +1849334401749026834935*n^2 -1662134287466221884960*n +573649997457991096080)*a(n-2) +6400*(5*n-13)*(5*n-11)*(2475036532470005*n-2376524337096748)*(5*n-9)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Aug 03 2025
a(n) = 2^(5*n+1) - binomial(5*n+1, n)*(hypergeom([1, -1-4*n], [1+n], -1) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((2-g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 12 2025
From Seiichi Manyama, Aug 16 2025: (Start)
G.f.: 1/(1 - x*g^3*(10-3*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 3*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)
a(n) ~ 5^(5*n + 3/2) / (3*sqrt(Pi*n) * 2^(8*n + 3/2)). - Vaclav Kotesovec, Aug 21 2025
Comments