A386743 For n >= 0, a(n) is the least Fibonacci number F(i) such that F(i) = (2*n + 1)*(n + k) for some k >= 0.
0, 3, 55, 21, 144, 55, 377, 6765, 2584, 2584, 987, 46368, 75025, 14930352, 317811, 832040, 6765, 102334155, 4181, 317811, 6765, 701408733, 1548008755920, 2178309, 225851433717, 14930352, 196418, 6765, 14930352, 591286729879, 832040, 46368, 9227465, 72723460248141, 46368
Offset: 0
Keywords
Examples
For n = 3: F(i) = 21 + 7*k is true for k = 0, F(8) = 21, thus a(3) = 21.
Programs
-
Mathematica
a[n_]:=Module[{i=0},While[!Divisible[Fibonacci[i],2n+1] || Fibonacci[i]/(2n+1) < n, i++]; Fibonacci[i]]; Array[a,35,0] (* Stefano Spezia, Aug 04 2025 *)
-
PARI
a(n) = my(i=0, f=fibonacci(0)); while((f % (2*n+1)) || (f/(2*n+1) < n), i++; f=fibonacci(i)); f; \\ Michel Marcus, Aug 01 2025
-
Python
def A386743(n): a, b, m, k = 0, 1, n*((n<<1)|1), (n<<1)|1 while a
Chai Wah Wu, Aug 11 2025
Extensions
More terms from Michel Marcus, Aug 01 2025
Comments