cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386768 a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(3*n+k-1,k).

Original entry on oeis.org

1, 17, 589, 23063, 952421, 40527732, 1758058219, 77293019898, 3431959098741, 153547092814172, 6911193017626324, 312596792782451183, 14196172772254858211, 646897139198653660412, 29563753017571135649154, 1354477988702509748029668, 62191803671962046948722581
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 5^k*2^(n-k)*binomial(3*n+k-1, k));

Formula

a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k).
a(n) = [x^n] ( (1+2*x)^4/(1-3*x)^3 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-3*x)^3 / (1+2*x)^4 ). See A386774.
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(4*n,k).
D-finite with recurrence +6561*n*(3*n-1)*(866874441*n -1379250238)*(3*n-2)*a(n) +648*(-3285736631046*n^4 +7965087872184*n^3 -621409760406*n^2 -9688518250831*n +5867806764110)*a(n-1) +1920*(-7264105318332*n^4 +60745334410890*n^3 -195779508237450*n^2 +280383483469585*n -148039402286753)*a(n-2) -51200*(2*n-5)*(4*n-9) *(4581663714*n-6698674013)*(4*n-11)*a(n-3)=0. - R. J. Mathar, Aug 03 2025

A386771 Expansion of (1/x) * Series_Reversion( x * (1-2*x)^3 / (1+3*x)^4 ).

Original entry on oeis.org

1, 18, 474, 14732, 502401, 18180768, 685607224, 26650023732, 1060231986276, 42960995865518, 1766880793326474, 73566710202432732, 3094892737300954526, 131352228574805862768, 5617341984325110170724, 241825069451020881591732, 10471314920765093871735276
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2025

Keywords

Crossrefs

Cf. A386774.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-2*x)^3/(1+3*x)^4)/x)
    
  • PARI
    a(n) = sum(k=0, n, 3^k*2^(n-k)*binomial(4*(n+1), k)*binomial(4*n-k+2, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 3^k * 2^(n-k) * binomial(4*(n+1),k) * binomial(4*n-k+2,n-k).
a(n) = (1/(n+1)) * [x^n] ( (1+3*x)^4 / (1-2*x)^3 )^(n+1).
D-finite with recurrence +168*(3*n+2)*(3*n+1)*(n+1)*a(n) +(-204763*n^3 +291562*n^2 -58913*n +7322)*a(n-1) +3*(2113057*n^3 -10391714*n^2 +14167979*n -5959810)*a(n-2) +15*(939475*n^3 +13499790*n^2 -61292611*n +62827794)*a(n-3) -22987800*(2*n-5)*(4*n-9)*(4*n-11)*a(n-4)=0. - R. J. Mathar, Aug 03 2025
Showing 1-2 of 2 results.