cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386766 a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(n+k-1,k).

Original entry on oeis.org

1, 7, 99, 1618, 28051, 502182, 9174174, 169955268, 3180814851, 59997194782, 1138669104874, 21718428172668, 415955669988526, 7994062687411132, 154087546950639324, 2977629771383522568, 57667991491752308451, 1119034767346120619982, 21752068061568290996274
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 5^k*2^(n-k)*binomial(n+k-1, k));

Formula

a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(2*n,k) * binomial(2*n-k-1,n-k).
a(n) = [x^n] ( (1+2*x)^2/(1-3*x) )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-3*x) / (1+2*x)^2 ). See A386772.
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(2*n,k).
D-finite with recurrence 9*n*a(n) +6*(-18*n-5)*a(n-1) +80*(-17*n+37)*a(n-2) +800*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Aug 03 2025

A386767 a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(2*n+k-1,k).

Original entry on oeis.org

1, 12, 294, 8178, 240186, 7271832, 224484684, 7024333608, 221997758346, 7069839153252, 226514542354974, 7293106513777338, 235771657829954856, 7648097463209959872, 248816951694728297664, 8115177647328907792368, 265257523746851227499466, 8687091365891501763853692
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 5^k*2^(n-k)*binomial(2*n+k-1, k));

Formula

a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(3*n,k) * binomial(3*n-k-1,n-k).
a(n) = [x^n] ( (1+2*x)^3/(1-3*x)^2 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-3*x)^2 / (1+2*x)^3 ). See A386773.
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(3*n,k).
D-finite with recurrence 54*n*(2*n-1)*a(n) +3*(-2063*n^2+4087*n-2340)*a(n-1) +4*(21379*n^2-81239*n+73110)*a(n-2) +50*(277*n^2-6323*n+15702)*a(n-3) -8400*(3*n-10)*(3*n-11)*a(n-4)=0. - R. J. Mathar, Aug 03 2025

A385671 a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(4*n+1,k) * binomial(4*n-k,n-k).

Original entry on oeis.org

1, 22, 774, 30458, 1260886, 53731512, 2333065354, 102643195068, 4559878830006, 204091261040552, 9189096061165784, 415734554486178378, 18884084064916032026, 860673634902720476392, 39339618388269633525564, 1802605962076744803396888, 82777622289467318635747446
Offset: 0

Views

Author

Seiichi Manyama, Aug 04 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^k*3^(n-k)*binomial(4*n+1, k)*binomial(4*n-k, n-k));

Formula

a(n) = [x^n] (1+2*x)^(4*n+1)/(1-3*x)^(3*n+1).
a(n) = [x^n] 1/((1-2*x) * (1-5*x)^(3*n+1)).
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(3*n+k,k).

A386774 Expansion of (1/x) * Series_Reversion( x * (1-3*x)^3 / (1+2*x)^4 ).

Original entry on oeis.org

1, 17, 439, 13513, 458196, 16518407, 621247194, 24099952473, 957294067516, 38741943503972, 1591753835634799, 66219447135668383, 2783826043226606236, 118078452737821009962, 5047034289902290964004, 217173909723115943823993, 9400092428228971114597356
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-3*x)^3/(1+2*x)^4)/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^k*3^(n-k)*binomial(4*(n+1), k)*binomial(4*n-k+2, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * 3^(n-k) * binomial(4*(n+1),k) * binomial(4*n-k+2,n-k).
a(n) = (1/(n+1)) * [x^n] ( (1+2*x)^4 / (1-3*x)^3 )^(n+1).
Showing 1-4 of 4 results.