cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386768 a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(3*n+k-1,k).

Original entry on oeis.org

1, 17, 589, 23063, 952421, 40527732, 1758058219, 77293019898, 3431959098741, 153547092814172, 6911193017626324, 312596792782451183, 14196172772254858211, 646897139198653660412, 29563753017571135649154, 1354477988702509748029668, 62191803671962046948722581
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 5^k*2^(n-k)*binomial(3*n+k-1, k));

Formula

a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k).
a(n) = [x^n] ( (1+2*x)^4/(1-3*x)^3 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-3*x)^3 / (1+2*x)^4 ). See A386774.
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(4*n,k).
D-finite with recurrence +6561*n*(3*n-1)*(866874441*n -1379250238)*(3*n-2)*a(n) +648*(-3285736631046*n^4 +7965087872184*n^3 -621409760406*n^2 -9688518250831*n +5867806764110)*a(n-1) +1920*(-7264105318332*n^4 +60745334410890*n^3 -195779508237450*n^2 +280383483469585*n -148039402286753)*a(n-2) -51200*(2*n-5)*(4*n-9) *(4581663714*n-6698674013)*(4*n-11)*a(n-3)=0. - R. J. Mathar, Aug 03 2025

A385669 a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 12, 184, 3088, 54216, 977712, 17946384, 333571488, 6258363016, 118270099312, 2247983617584, 42929251009888, 823020113236816, 15830699744850912, 305362126902698784, 5904598544338068288, 114417320349085700616, 2221310577262416982512
Offset: 0

Views

Author

Seiichi Manyama, Aug 04 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^k*3^(n-k)*binomial(2*n+1, k)*binomial(2*n-k, n-k));

Formula

a(n) = [x^n] (1+2*x)^(2*n+1)/(1-3*x)^(n+1).
a(n) = [x^n] 1/((1-2*x) * (1-5*x)^(n+1)).
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(2*n+1,k).
a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(n+k,k).

A386767 a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(2*n+k-1,k).

Original entry on oeis.org

1, 12, 294, 8178, 240186, 7271832, 224484684, 7024333608, 221997758346, 7069839153252, 226514542354974, 7293106513777338, 235771657829954856, 7648097463209959872, 248816951694728297664, 8115177647328907792368, 265257523746851227499466, 8687091365891501763853692
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 5^k*2^(n-k)*binomial(2*n+k-1, k));

Formula

a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(3*n,k) * binomial(3*n-k-1,n-k).
a(n) = [x^n] ( (1+2*x)^3/(1-3*x)^2 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-3*x)^2 / (1+2*x)^3 ). See A386773.
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(3*n,k).
D-finite with recurrence 54*n*(2*n-1)*a(n) +3*(-2063*n^2+4087*n-2340)*a(n-1) +4*(21379*n^2-81239*n+73110)*a(n-2) +50*(277*n^2-6323*n+15702)*a(n-3) -8400*(3*n-10)*(3*n-11)*a(n-4)=0. - R. J. Mathar, Aug 03 2025
Showing 1-3 of 3 results.