cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386768 a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(3*n+k-1,k).

Original entry on oeis.org

1, 17, 589, 23063, 952421, 40527732, 1758058219, 77293019898, 3431959098741, 153547092814172, 6911193017626324, 312596792782451183, 14196172772254858211, 646897139198653660412, 29563753017571135649154, 1354477988702509748029668, 62191803671962046948722581
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 5^k*2^(n-k)*binomial(3*n+k-1, k));

Formula

a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k).
a(n) = [x^n] ( (1+2*x)^4/(1-3*x)^3 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-3*x)^3 / (1+2*x)^4 ). See A386774.
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(4*n,k).
D-finite with recurrence +6561*n*(3*n-1)*(866874441*n -1379250238)*(3*n-2)*a(n) +648*(-3285736631046*n^4 +7965087872184*n^3 -621409760406*n^2 -9688518250831*n +5867806764110)*a(n-1) +1920*(-7264105318332*n^4 +60745334410890*n^3 -195779508237450*n^2 +280383483469585*n -148039402286753)*a(n-2) -51200*(2*n-5)*(4*n-9) *(4581663714*n-6698674013)*(4*n-11)*a(n-3)=0. - R. J. Mathar, Aug 03 2025

A386766 a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(n+k-1,k).

Original entry on oeis.org

1, 7, 99, 1618, 28051, 502182, 9174174, 169955268, 3180814851, 59997194782, 1138669104874, 21718428172668, 415955669988526, 7994062687411132, 154087546950639324, 2977629771383522568, 57667991491752308451, 1119034767346120619982, 21752068061568290996274
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 5^k*2^(n-k)*binomial(n+k-1, k));

Formula

a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(2*n,k) * binomial(2*n-k-1,n-k).
a(n) = [x^n] ( (1+2*x)^2/(1-3*x) )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-3*x) / (1+2*x)^2 ). See A386772.
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(2*n,k).
D-finite with recurrence 9*n*a(n) +6*(-18*n-5)*a(n-1) +80*(-17*n+37)*a(n-2) +800*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Aug 03 2025

A385670 a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k).

Original entry on oeis.org

1, 17, 429, 12048, 355501, 10792737, 333781044, 10457735928, 330823760061, 10543365694707, 338004221112309, 10887987584565108, 352127854740967596, 11426385227977214252, 371844089088280093224, 12130745906826301055088, 396599383187880024765981
Offset: 0

Views

Author

Seiichi Manyama, Aug 04 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^k*3^(n-k)*binomial(3*n+1, k)*binomial(3*n-k, n-k));

Formula

a(n) = [x^n] (1+2*x)^(3*n+1)/(1-3*x)^(2*n+1).
a(n) = [x^n] 1/((1-2*x) * (1-5*x)^(2*n+1)).
a(n) = Sum_{k=0..n} 5^k * (-3)^(n-k) * binomial(3*n+1,k).
a(n) = Sum_{k=0..n} 5^k * 2^(n-k) * binomial(2*n+k,k).
Showing 1-3 of 3 results.