A386782 a(n) = n^3*sigma_8(n).
0, 1, 2056, 177174, 4210752, 48828250, 364269744, 1977327086, 8623620608, 31385843307, 100390882000, 285311671942, 746035774848, 1792160396234, 4065384488816, 8651096365500, 17661175009280, 34271896312546, 64529293839192, 116490258905078, 205603651344000, 350330949134964
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
[0] cat [n^3*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Mathematica
Table[n^3*DivisorSigma[8, n], {n, 0, 30}] nmax = 30; CoefficientList[Series[Sum[k^11*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Sum_{k>=1} k^11*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4.
a(n) = n^3*A013956(n).
Dirichlet g.f.: zeta(s-3)*zeta(s-11). - R. J. Mathar, Aug 03 2025