A386847 a(n) is the number of sets of distinct five-cuboid combinations that fill an n X n X n cube excluding combinations that contain strict cuboids.
0, 0, 1, 3, 10, 19, 30, 44, 64, 84, 100, 141, 150, 202, 218, 279, 282, 382, 365, 478, 470, 603, 568, 749, 690, 897, 840, 1066, 980, 1279, 1151, 1473, 1357, 1716, 1552, 1988, 1785, 2265, 2062, 2573, 2327, 2947, 2640, 3296, 3006, 3718, 3361, 4182, 3774, 4659, 4251
Offset: 1
Keywords
Examples
(4,4,4) triplet can be decomposed into sets of five triplets in 31 different ways and only the following three sets do not contain strict cuboids: {(1,1,1), (1,1,2), (1,1,4), (1,3,3), (3,4,4)}, {(1,1,1), (1,1,2), (1,3,3), (1,4,4), (3,3,4)}, {(1,1,3), (1,1,4), (1,3,3), (1,4,4), (2,4,4)}.
Crossrefs
Cf. A384479.
Extensions
a(16)-a(39) from Sean A. Irvine, Aug 06 2025
More terms from Jinyuan Wang, Aug 10 2025
Comments