A386874 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (1/(2*w)) * (x^2 + x) * ((((v + w)/2)^(n - 1)) * (x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1)) * (x^2 + 2*x + 4 - w)), where v = x^2 + 4*x + 4 and w = sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12).
0, 1, 1, 0, 4, 7, 4, 1, 0, 15, 40, 42, 23, 7, 1, 0, 56, 201, 306, 262, 140, 48, 10, 1, 0, 209, 943, 1877, 2189, 1672, 881, 325, 82, 13, 1, 0, 780, 4239, 10412, 15368, 15276, 10841, 5660, 2194, 624, 125, 16, 1, 0, 2911, 18506, 54051, 96501, 118175, 105495
Offset: 1
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1: 0 1 1 2: 0 4 7 4 1 3: 0 15 40 42 23 7 1 4: 0 56 201 306 262 140 48 10 1 5: 0 209 943 1877 2189 1672 881 325 82 13 1 6: 0 780 4239 10412 15368 15276 10841 5660 2194 624 125 16 1 7: 0 2911 18506 54051 96501 118175 105495 71107 36885 14817 4579 1064 177 19 1 ...
Links
- Roger Antonsen and Laura Taalman, Categorizing Celtic Knot Designs, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, 2021, pp. 87-94.
- Jonathan L. Gross and Thomas W. Tucker, A Celtic Framework for Knots and Links, Discrete & Computational Geometry 46 (2011), 86-99.
- Franck Ramaharo, The bracket polynomial of the Celtic link shadow CK_4^(2n), arXiv:2508.10410 [math.GT], 2025. See p. 6.
Programs
-
Mathematica
With[{nmax = 15}, CoefficientList[CoefficientList[Series[x*y*(x + 1)*(1 - x*y)/(1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2), {x, 0, 2*nmax}, {y, 0, nmax}], y], x]] // Flatten
-
Maxima
nmax: 15$ v: x^2 + 4*x + 4$ w: sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12)$ p(n, x) := expand((1/(2*w))*(x^2 + x)*((((v + w)/2)^(n - 1))*(x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1))*(x^2 + 2*x + 4 - w)))$ create_list(ratcoef(p(n, x), x, k), n, 1, nmax, k, 0, 2*n);
Formula
T(n,1) = A001353(n).
G.f.: x*y*(x + 1)*(1 - x*y) / (1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2).
Comments