A386877 Triangle read by rows: T(n, k) = n! / (k! * (n/k)!) if k divides n otherwise 0; T(n, 0) = 0^n.
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 6, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 60, 60, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 840, 0, 840, 0, 0, 0, 1, 0, 1, 0, 10080, 0, 0, 0, 0, 0, 1, 0, 1, 15120, 0, 0, 15120, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle starts: [ 0] [1] [ 1] [0, 1] [ 2] [0, 1, 1] [ 3] [0, 1, 0, 1] [ 4] [0, 1, 6, 0, 1] [ 5] [0, 1, 0, 0, 0, 1] [ 6] [0, 1, 60, 60, 0, 0, 1] [ 7] [0, 1, 0, 0, 0, 0, 0, 1] [ 8] [0, 1, 840, 0, 840, 0, 0, 0, 1] [ 9] [0, 1, 0, 10080, 0, 0, 0, 0, 0, 1] [10] [0, 1, 15120, 0, 0, 15120, 0, 0, 0, 0, 1] [11] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
Programs
-
Mathematica
A386877[n_, k_] := Which[k == 0, Boole[n == 0], Divisible[n, k], n!/(k!*(n/k)!), True, 0]; Table[A386877[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Aug 09 2025 *)
-
SageMath
F = factorial def T(n, k): if k == 0: return 0**n return F(n)/(F(k)*F(n//k)) if k.divides(n) else 0 for n in range(33): print([T(n,k) for k in srange(n+1)])
Formula
sign(T(n, k)) = A113704(n, k).