cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386898 a(n) = Sum_{k=0..n} binomial(5*n+1,k) * binomial(5*n-k,n-k).

Original entry on oeis.org

1, 11, 199, 4031, 85919, 1885311, 42154111, 955020287, 21847988735, 503573013503, 11675986431999, 272033089535999, 6363380561141759, 149354395882487807, 3515589114309115903, 82957940541503045631, 1961823306198598418431, 46482660516543479939071
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*n+1, k)*binomial(5*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(5*n+1)/(1-x)^(4*n+1).
a(n) = [x^n] 1/((1-x) * (1-2*x)^(4*n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n} 2^k * binomial(4*n+k,k).
a(n) = binomial(5*n, n)*hypergeom([-1-5*n, -n], [-5*n], -1). - Stefano Spezia, Aug 07 2025