A386916 Nonprimes k such that sopfr(k) = rad(k), where sopfr(k) is sum of the prime factors of k (counting multiplicity), and rad(k) is the product of its distinct prime factors.
18750, 22500, 24000, 27000, 28800, 30720, 32400, 34560, 36450, 38880, 43740, 201684, 345744, 388962, 526848, 592704, 666792, 903168, 1016064, 1143072, 1285956, 1376256, 1548288, 1741824, 1959552, 2204496, 2480058, 7730448, 8696754, 33732864, 35644128, 37949472
Offset: 1
Keywords
Examples
18750 = 2*3*5^5 is a term because 2 + 3 + 5 + 5 + 5 + 5 + 5 = 2*3*5 = 30. 1285956 = 2^2*3^8*7^2 is a term because 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 7 + 7 = 2*3*7 = 42. 18537438215625 = 3*5^5*7^11 is a term because 3 + 5*5 + 11*7 = 3*5*7 = 105.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10344 (terms <= 10^35)
Programs
-
Maple
A386916:=proc(n) option remember; local k,i; if n=1 then 18750 else for k from procname(n-1)+1 do if not isprime(k) and NumberTheory:-Radical(k)=add(i[1]*i[2],i in ifactors(k)[2]) then return k fi od fi; end proc; seq(A386916(n),n=1..10);
-
Mathematica
q[k_] := !PrimeQ[k] && Module[{f = FactorInteger[k]},Plus @@ Times @@@f == Times @@ f[[;;, 1]]]; Select[Range[2, 10^6], q] (* Amiram Eldar, Aug 13 2025 *)
-
PARI
is(n) = {my(f = factor(n)); if(#f~ < 3, return(0)); prod(i = 1, #f~, f[i, 1]) == sum(i = 1, #f~, f[i,1]*f[i,2])} \\ David A. Corneth, Aug 13 2025
Comments