A386928 Algebraic rank of elliptic curve y^2 = x^3 + n*x + n.
1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 1, 2, 0
Offset: 1
Examples
a(1) = 1 because y^2 = x^3 + x + 1 has rank 1.
Links
- LMFDB, y^2 = x^3 + x + 1.
Programs
-
PARI
a(n) = ellanalyticrank(ellinit([n, n]))[1]; \\ Jinyuan Wang, Aug 08 2025
-
SageMath
for k in range(1,29): E = EllipticCurve([k,k]) print(E.rank(),end=", ")
Extensions
More terms from Jinyuan Wang, Aug 08 2025
Comments