A386930 Number of divisors d of n such that (-d)^d == -d^d (mod n).
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 4, 4, 2, 5, 2, 4, 4, 3, 2, 5, 3, 3, 4, 4, 2, 5, 2, 5, 4, 3, 4, 7, 2, 3, 4, 5, 2, 5, 2, 4, 6, 3, 2, 6, 3, 5, 4, 4, 2, 7, 4, 5, 4, 3, 2, 6, 2, 3, 6, 6, 4, 5, 2, 4, 4, 5, 2, 9, 2, 3, 6, 4, 4, 5, 2, 6, 5, 3, 2, 6, 4, 3, 4, 5, 2, 8, 4, 4, 4, 3, 4, 7, 2, 5, 6, 7
Offset: 1
Programs
-
Magma
[1 + #[d: d in [1..n-1] | n mod d eq 0 and Modexp(-d,d,n) eq -Modexp(d,d,n) mod n]: n in [1..100]];
-
Mathematica
a[n_] := DivisorSum[n, 1 &, PowerMod[-#, #, n] == Mod[-PowerMod[#, #, n], n] &]; Array[a, 100] (* Amiram Eldar, Aug 09 2025 *)
-
PARI
a(n) = sumdiv(n, d, Mod(-d, n)^d == - Mod(d, n)^d); \\ Michel Marcus, Aug 09 2025