cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386930 Number of divisors d of n such that (-d)^d == -d^d (mod n).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 4, 4, 2, 5, 2, 4, 4, 3, 2, 5, 3, 3, 4, 4, 2, 5, 2, 5, 4, 3, 4, 7, 2, 3, 4, 5, 2, 5, 2, 4, 6, 3, 2, 6, 3, 5, 4, 4, 2, 7, 4, 5, 4, 3, 2, 6, 2, 3, 6, 6, 4, 5, 2, 4, 4, 5, 2, 9, 2, 3, 6, 4, 4, 5, 2, 6, 5, 3, 2, 6, 4, 3, 4, 5, 2, 8, 4, 4, 4, 3, 4, 7, 2, 5, 6, 7
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [1 + #[d: d in [1..n-1] | n mod d eq 0 and Modexp(-d,d,n) eq -Modexp(d,d,n) mod n]: n in [1..100]];
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, PowerMod[-#, #, n] == Mod[-PowerMod[#, #, n], n] &]; Array[a, 100] (* Amiram Eldar, Aug 09 2025 *)
  • PARI
    a(n) = sumdiv(n, d, Mod(-d, n)^d == - Mod(d, n)^d); \\ Michel Marcus, Aug 09 2025