cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A384365 a(n) = Sum_{k=0..n} (k+1) * 3^k * binomial(2*n+1,n-k).

Original entry on oeis.org

1, 9, 67, 458, 2979, 18750, 115278, 696372, 4149283, 24452534, 142808922, 827780684, 4767638158, 27309438252, 155689424316, 883891633896, 4999703023395, 28188457323366, 158463492162594, 888473780483292, 4969653746436762, 27737520941131140, 154507945286680452
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[ (k+1) * 3^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[(k+1) * 3^k*Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*3^k*binomial(2*n+1, n-k));
    

Formula

a(n) = [x^n] 1/((1-4*x)^2 * (1-x)^n).
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k-1,n-k).
a(n) = Sum_{k=0..n} (k+1) * 4^k * binomial(2*n-k-1,n-k).
G.f.: (1+sqrt(1-4*x))/( 2 * sqrt(1-4*x) * (2*sqrt(1-4*x)-1)^2 ).
D-finite with recurrence +27*n*a(n) +6*(-58*n+17)*a(n-1) +32*(46*n-37)*a(n-2) +1024*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Aug 19 2025
a(n) ~ n * 2^(4*n+1) / 3^(n+1). - Vaclav Kotesovec, Aug 20 2025

A386940 a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(2*n-k-1,n-k).

Original entry on oeis.org

1, 3, 13, 60, 285, 1378, 6748, 33372, 166365, 834900, 4213638, 21368724, 108820764, 556184580, 2851679620, 14661848560, 75568345821, 390330333402, 2020046912260, 10472193542100, 54373036935910, 282704274266040, 1471722678992700, 7670327017789800, 40017679829372700
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*k, k)*binomial(2*n-k-1, n-k));

Formula

a(n) = [x^n] 1/(sqrt(1-4*x) * (1-x)^n).
G.f.: (1+sqrt(1-4*x))/sqrt( 4 * (1-4*x) * (2*sqrt(1-4*x)-1) ).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(2*n-1/2,k) * binomial(n-k-1/2,n-k) = Sum_{k=0..n} (3/4)^k * binomial(2*k,k) * binomial(2*n-1/2,n-k).
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(2*n-1/2,k) * binomial(2*n-k-1,n-k).

A386942 a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 8, 54, 340, 2060, 12180, 70812, 406656, 2313630, 13067340, 73372728, 410013864, 2282066332, 12658839200, 70017730680, 386314361808, 2126818591932, 11686657363236, 64108376373700, 351142219736000, 1920711937207140, 10493241496749000, 57263080117042800
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(2*k+1) * Binomial (2*k, k) *Binomial(2*n-k, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[(2*k+1) *Binomial[2*k,k]* Binomial[2*n-k,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
  • PARI
    a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(2*n-k, n-k));
    

Formula

a(n) = [x^n] 1/((1-4*x)^(3/2) * (1-x)^(n+1)).
G.f.: 1/sqrt( (1-4*x) * (2*sqrt(1-4*x)-1)^3 ).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(2*n+3/2,k) * binomial(n-k+1/2,n-k) = Sum_{k=0..n} (2*k+1) * (3/4)^k * binomial(2*k,k) * binomial(2*n+3/2,n-k).
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(2*n+3/2,k) * binomial(2*n-k,n-k).
Showing 1-3 of 3 results.