cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A387050 Number of entries in the n-th row of Pascal's triangle not divisible by 16.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 9, 18, 15, 20, 17, 22, 21, 24, 21, 26, 25, 28, 27, 30, 30, 32, 9, 18, 23, 36, 21, 30, 33, 40, 25, 34, 35, 44, 37, 42, 44, 48, 21, 42, 37, 52, 37, 50, 48, 56, 43, 54, 52, 60, 54, 60, 60, 64, 9, 18, 23, 36, 29
Offset: 0

Views

Author

Chai Wah Wu, Aug 15 2025

Keywords

Crossrefs

Programs

  • Python
    def A387050(n):
        n1 = n>>1
        n2 = n1>>1
        n3 = n2>>1
        np = ~n
        n10, n100, n110 = (k1:=n1&np).bit_count(), (k2:=(k1>>1)&np).bit_count(), (k3:=n2&k1).bit_count()
        n1100, n1000, n1010, n1110 = (n3&k2).bit_count(), ((k2>>1)&np).bit_count(), ((k1>>2)&k1).bit_count(), (n3&k3).bit_count()
        return n10*(n10*(n10+3)+6*((n100<<2)+n110)+20)//6+((n1000<<2)+n100+n1010+n1100<<2)+n110+n1110+8<>3

A387051 Number of entries in the n-th row of Pascal's triangle not divisible by 32.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 17, 34, 27, 36, 29, 38, 35, 40, 33, 42, 39, 44, 41, 46, 45, 48, 41, 50, 47, 52, 49, 54, 53, 56, 53, 58, 57, 60, 59, 62, 62, 64, 17, 34, 43, 68
Offset: 0

Views

Author

Chai Wah Wu, Aug 15 2025

Keywords

Crossrefs

Programs

  • Python
    def A387051(n):
        n1 = n>>1
        n2 = n1>>1
        n3 = n2>>1
        n4 = n3>>1
        np = ~n
        n10, n100, n110 = (k1:=n1&np).bit_count(), (k2:=(k1>>1)&np).bit_count(), (k3:=n2&k1).bit_count()
        n1100, n1000, n1010, n1110 = (k5:=n3&k2).bit_count(), (k4:=(k2>>1)&np).bit_count(), (k6:=(k1>>2)&k1).bit_count(), (k7:=n3&k3).bit_count()
        n10000, n11000, n10100, n11100 = ((k4>>1)&np).bit_count(), (n4&k4).bit_count(), ((k6>>1)&np).bit_count(), (n4&k5).bit_count()
        n10010, n11010, n10110, n11110 = ((k2>>2)&k1).bit_count(), (n4&k6).bit_count(), ((k1>>3)&k3).bit_count(), (n4&k7).bit_count()
        c = n10*(n10*(n10*(n10+2)+((n100<<2)+n110)*12+35)+((((((n1000<<2)+n1010+n1100<<1)+n100<<1)+n1110<<1)+n110)*12+154))//24
        c += n100*((n100<<1)+n110+1<<2)+(((n10000<<2)+n1000+n10010+n10100+n11000+1<<2)+n10110+n11010+n11100<<2)+n1110+n11110+(n110*(n110+5)>>1)
        return c<>4

A386953 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 9.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 45, 49, 57, 69, 78, 90, 105, 119, 135, 153, 160, 174, 195, 209, 228, 252, 273, 297, 324, 328, 336, 348, 360, 378, 402, 422, 450, 486, 495, 513, 540, 560, 588, 624, 655, 693, 738, 752, 780, 822, 850, 888, 936, 978, 1026, 1080, 1087
Offset: 0

Views

Author

Chai Wah Wu, Aug 10 2025

Keywords

Crossrefs

Programs

  • Python
    import re
    from gmpy2 import digits
    def A386953(n):
        c = 0
        for m in range(n+1):
            s = digits(m,3)
            n1 = s.count('1')
            n2 = s.count('2')
            n01 = s.count('10')
            n02 = s.count('20')
            n11 = len(re.findall('(?=11)',s))
            n12 = s.count('21')
            c += ((3*((1+n01<<2)+n11)+((n02<<2)+n12<<2))*3**n2<>2
        return c

A387108 Number of entries in the n-th row of Pascal's triangle not divisible by 25.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 6, 12, 18, 24, 30, 15, 20, 25, 30, 35, 24, 28, 32, 36, 40, 33, 36, 39, 42, 45, 42, 44, 46, 48, 50, 11, 22, 33, 44, 55, 24, 33, 42, 51, 60, 37, 44, 51, 58, 65, 50, 55, 60
Offset: 0

Views

Author

Chai Wah Wu, Aug 16 2025

Keywords

Crossrefs

Programs

  • Python
    import re
    from gmpy2 import digits
    def A387108(n):
        s = digits(n,5)
        n1, n2, n3, n4 = s.count('1'), s.count('2'), s.count('3'), s.count('4')
        n10, n12, n13, n42, n43, n11 = s.count('10'), s.count('12'), s.count('13'), s.count('42'), s.count('43'), len(re.findall('(?=11)',s))
        n20, n21, n23, n30, n22 = s.count('20'), s.count('21'), s.count('23'), s.count('30'), len(re.findall('(?=22)',s))
        n31, n32, n40, n41, n33 = s.count('31'), s.count('32'), s.count('40'), s.count('41'), len(re.findall('(?=33)',s))
        return ((1440*n10+540*n11+240*n12+90*n13+1920*n20+720*(n21+1)+320*n22+120*n23+2160*n30+810*n31+360*n32+135*n33+2304*n40+864*n41+384*n42+144*n43)*3**n2*5**n4<<(n1+(n3<<1)))//45>>4

A387109 Number of entries in the n-th row of Pascal's triangle not divisible by 27.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 10, 20, 30, 19, 26, 33, 28, 32, 36, 25, 32, 39, 32, 37, 42, 39, 42, 45, 40, 44, 48, 45, 48, 51, 50, 52, 54, 19, 38, 57, 34, 47, 60, 49, 56, 63, 40, 53, 66, 51, 60
Offset: 0

Views

Author

Chai Wah Wu, Aug 16 2025

Keywords

Crossrefs

Programs

  • Python
    import re
    from gmpy2 import digits
    def A387109(n):
        s = digits(n,3)
        n1, n2, n10, n20, n21, n11 = s.count('1'), s.count('2'), s.count('10'), s.count('20'), s.count('21'), len(re.findall('(?=11)',s))
        n100, n110, n120, n101, n111, n121 = s.count('100'), s.count('110'), s.count('120'), len(re.findall('(?=101)',s)), len(re.findall('(?=111)',s)), len(re.findall('(?=121)',s))
        n200, n201, n210, n211, n220, n221 = s.count('200'), s.count('201'), s.count('210'), s.count('211'), s.count('220'), s.count('221')
        c = 144*n10+63*n11+128*(n20+n220)+80*n21+864*n100+216*(n101+n110)+54*n111+96*n120+24*n121+1152*n200+288*(n201+n210+1)+72*n211+32*n221
        c += (m:=4*n10+n11)*(96*n20+24*n21+9*m)+16*(4*n20+n21)**2
        return (c*3**n2<>5
Showing 1-5 of 5 results.