cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387158 Numbers k such that A173557(k) = A173557(sigma(k)), where A173557(n) is multiplicative with a(p^e) = p-1 and sigma is the sum of divisors function.

Original entry on oeis.org

1, 6, 26, 28, 63, 74, 120, 122, 135, 146, 270, 314, 351, 386, 416, 496, 520, 554, 626, 672, 794, 842, 875, 891, 914, 999, 1080, 1082, 1226, 1232, 1322, 1346, 1404, 1466, 1480, 1514, 1638, 1647, 1750, 1754, 1782, 1859, 1971, 1994, 2186, 2306, 2402, 2426, 2440, 2474, 2642, 2762, 2906, 2920, 3242, 3314, 3506, 3718
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Comments

Numbers k for which A173557(k) == A387157(k).

Crossrefs

Subsequences: A000396, A387159 (odd terms).
Cf. also A006872, A351446, A386424.

Programs

  • Mathematica
    A387158Q[k_] := #[k] == #[DivisorSigma[1, k]] & [Times @@ (FactorInteger[#][[All, 1]] - 1) &];
    Select[Range[10000], A387158Q] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1,factor(n)[,1]));
    is_A387158(n) = (A173557(sigma(n))==A173557(n));

A387156 a(n) = A003557(sigma(n)), where A003557(n) is multiplicative with a(p^e) = p^(e-1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 4, 1, 1, 3, 2, 2, 1, 4, 4, 1, 3, 1, 2, 1, 16, 6, 4, 2, 1, 1, 4, 4, 1, 12, 16, 3, 8, 9, 8, 1, 1, 2, 4, 3, 1, 16, 2, 2, 1, 12, 8, 2, 1, 1, 12, 7, 9, 4, 12, 4, 8, 3, 2, 4, 1, 16, 4, 1, 2, 24, 2, 3, 16, 24, 12, 1, 1, 1, 2, 2, 16, 4, 8, 1, 11, 3, 2, 16, 18, 2, 4, 6, 3, 3, 8, 4, 64, 24, 4, 6, 7, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A387156[n_] := # / Times @@ FactorInteger[#][[All, 1]] & [DivisorSigma[1, n]];
    Array[A387156, 100] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A387156(n) = { my(s=sigma(n)); s/factorback(factor(s)[,1]); };

Formula

a(n) = A000203(n) / A080398(n).
a(n) = A062401(n) / A387157(n).

A387159 Odd numbers k such that A173557(k) = A173557(sigma(k)), where A173557(n) is multiplicative with a(p^e) = p-1 and sigma is the sum of divisors function.

Original entry on oeis.org

1, 63, 135, 351, 875, 891, 999, 1647, 1859, 1971, 4239, 5211, 7479, 8451, 10719, 11367, 12339, 14607, 16317, 16551, 17847, 18171, 19791, 20439, 22103, 23679, 26919, 27951, 29511, 31131, 31407, 31487, 32427, 32751, 33399, 35667, 37287, 39231, 43767, 44739, 47331, 50571, 52191, 53811, 54459, 57319, 57699, 63207, 66771
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Comments

Odd numbers k for which A173557(k) == A387157(k).

Crossrefs

Odd terms of A387158.
Cf. also A351443, A353679, A386425.

Programs

  • Mathematica
    A387159Q[k_] := OddQ[k] && #[k] == #[DivisorSigma[1, k]] & [Times @@ (FactorInteger[#][[All, 1]] - 1) &];
    Select[Range[100000], A387159Q] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1,factor(n)[,1]));
    is_A387159(n) = (n%2 && (A173557(sigma(n))==A173557(n)));
Showing 1-3 of 3 results.