cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386424 Numbers k such that sigma(k) has the same powerful part as k, where sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 5, 12, 13, 26, 29, 37, 41, 44, 56, 61, 73, 74, 76, 90, 101, 109, 113, 122, 137, 146, 153, 157, 172, 173, 181, 193, 218, 229, 236, 257, 268, 277, 281, 312, 313, 314, 317, 353, 362, 373, 386, 389, 397, 401, 409, 421, 433, 457, 458, 461, 509, 522, 524, 528, 541, 554, 560, 569, 601, 613, 617, 626, 641, 652, 653
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2025

Keywords

Comments

Conjecture 1: the initial 1 is the only square in this sequence, and a(2) = 2 is the only term that is twice a square.
Conjecture 2: A323653 is a subsequence (which would follow from conjecture 1 (c) given there).

Crossrefs

Subsequences: A323653 (conjectured), A351549, A386425 (odd composites), A386426 (nondeficient terms).
Cf. also A006872, A351446, A387158.

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n];a057521[n_] := n/Denominator[n/rad[n]^2];Select[Range[653],a057521[DivisorSigma[1,#]]==a057521[#]&] (* James C. McMahon, Aug 18 2025 *)
  • PARI
    A057521(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1))
    isA386424(n) = (A057521(sigma(n))==A057521(n));

Formula

{k | A057521(A000203(k)) = A057521(k)}, or equally, {k | A387156(k) = A003557(k)}.

A387157 a(n) = A173557(sigma(n)), where A173557(n) is multiplicative with a(p^e) = p-1 and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 1, 6, 2, 2, 1, 8, 12, 2, 2, 6, 6, 2, 2, 30, 2, 24, 4, 12, 1, 2, 2, 8, 30, 12, 4, 6, 8, 2, 1, 12, 2, 2, 2, 72, 18, 8, 6, 8, 12, 2, 10, 12, 24, 2, 2, 30, 36, 60, 2, 6, 2, 8, 2, 8, 4, 8, 8, 12, 30, 2, 12, 126, 12, 2, 16, 12, 2, 2, 2, 96, 36, 36, 30, 24, 2, 12, 4, 60, 10, 12, 12, 6, 2, 20, 8, 8, 8, 24, 6, 12, 1, 2, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Crossrefs

Cf. A000203, A003958, A080398, A173557, A387158 (positions where equal to A173557(n)).
Cf. also A351442.

Programs

  • Mathematica
    A387157[n_] := If[n == 1, 1, Times @@ (FactorInteger[DivisorSigma[1, n]][[All, 1]] - 1)];
    Array[A387157, 100] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A387157(n) = factorback(apply(p -> p-1,factor(sigma(n))[,1]));

Formula

a(n) = A003958(A080398(n)).

A387159 Odd numbers k such that A173557(k) = A173557(sigma(k)), where A173557(n) is multiplicative with a(p^e) = p-1 and sigma is the sum of divisors function.

Original entry on oeis.org

1, 63, 135, 351, 875, 891, 999, 1647, 1859, 1971, 4239, 5211, 7479, 8451, 10719, 11367, 12339, 14607, 16317, 16551, 17847, 18171, 19791, 20439, 22103, 23679, 26919, 27951, 29511, 31131, 31407, 31487, 32427, 32751, 33399, 35667, 37287, 39231, 43767, 44739, 47331, 50571, 52191, 53811, 54459, 57319, 57699, 63207, 66771
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Comments

Odd numbers k for which A173557(k) == A387157(k).

Crossrefs

Odd terms of A387158.
Cf. also A351443, A353679, A386425.

Programs

  • Mathematica
    A387159Q[k_] := OddQ[k] && #[k] == #[DivisorSigma[1, k]] & [Times @@ (FactorInteger[#][[All, 1]] - 1) &];
    Select[Range[100000], A387159Q] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1,factor(n)[,1]));
    is_A387159(n) = (n%2 && (A173557(sigma(n))==A173557(n)));
Showing 1-3 of 3 results.