A351549 Numbers k for which k * gcd(sigma(k), A019565(k)) is equal to sigma(k) * gcd(k, A019565(k)).
1, 1456, 15480, 114660, 2244600, 3894768, 25108200, 27052704, 65021040, 112402080, 1973921400
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
rad[n_] := Times @@ First /@ FactorInteger[n];a057521[n_] := n/Denominator[n/rad[n]^2];Select[Range[9,57501,2],!PrimeQ[#]&&a057521[DivisorSigma[1,#]]==a057521[#]&] (* James C. McMahon, Aug 18 2025 *)
A057521(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)) isA386425(n) = ((n>1) && (n%2) && !isprime(n) && (A057521(sigma(n))==A057521(n)));
a(386548) = 5919068925 = 3^4 * 5^2 * 7^2 * 11^2 * 17 * 29. sigma(5919068925) = 15355618740 = 2^2 * 3^4 * 5 * 7 * 11^2 * 19^2 * 31. The "don't care primes" is given by A003961(A007947(5919068925))) = 2947945 = 5*7*11*13*19*31, thus only odd prime factor that matters here is 3, which in case has the same exponent (4) in both n = 5919068925 and sigma(n). In a way, this number is very close to satisfying Euler's criterion for odd perfect numbers (A228058), except that it has two unitary prime factors of the form 4k+1, instead of just one, apart from the square factor. Both n/17 and n/29 are in A228058.
A387156[n_] := # / Times @@ FactorInteger[#][[All, 1]] & [DivisorSigma[1, n]]; Array[A387156, 100] (* Paolo Xausa, Aug 20 2025 *)
A387156(n) = { my(s=sigma(n)); s/factorback(factor(s)[,1]); };
Comments