cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387212 Expansion of sqrt((1-3*x) / (1-7*x)^3).

Original entry on oeis.org

1, 9, 75, 599, 4659, 35595, 268485, 2005785, 14873715, 109643195, 804354417, 5877232773, 42798735805, 310767250773, 2250899498763, 16267896905895, 117347641620435, 845043416086635, 6076092412278465, 43629213402099045, 312892629725930121, 2241442380182752209
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 3*x) / (1-7*x)^3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-3*x)/(1-7*x)^3],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-3*x)/(1-7*x)^3))
    

Formula

n*a(n) = (10*n-1)*a(n-1) - 21*(n-1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 7^k * 3^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 3^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 7^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k).

A387233 Expansion of sqrt((1-2*x) / (1-6*x)^5).

Original entry on oeis.org

1, 14, 142, 1252, 10190, 78724, 586236, 4247688, 30132438, 210175540, 1445920388, 9833940472, 66237449356, 442463439656, 2934485313400, 19340115356688, 126759642351462, 826734451831956, 5368338057048756, 34721155684000920, 223765535492622564, 1437403425873718776
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := Sqrt((1- 2*x) / (1-6*x)^5); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 23 2025
  • Mathematica
    CoefficientList[Series[Sqrt[(1-2*x)/(1-6*x)^5],{x,0,33}],x] (* Vincenzo Librandi, Aug 23 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-2*x)/(1-6*x)^5))
    

Formula

n*a(n) = (8*n+6)*a(n-1) - 12*n*a(n-2) for n > 1.
a(n) = (1/2)^n * Sum_{k=0..n} 3^k * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} 2^(n-k) * ((2*k+1) * (2*k+3)/3) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 6^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n+1,n-k).
Showing 1-2 of 2 results.