A387216 Numbers that have at least two prime factors (counting multiplicity) congruent to 1 mod 3.
49, 91, 98, 133, 147, 169, 182, 196, 217, 245, 247, 259, 266, 273, 294, 301, 338, 343, 361, 364, 392, 399, 403, 427, 434, 441, 455, 469, 481, 490, 494, 507, 511, 518, 532, 539, 546, 553, 559, 588, 589, 602, 637, 651, 665, 676, 679, 686, 703, 721, 722, 728, 735, 741, 763, 777, 784, 793, 798
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..7923
- Hajrudin Fejzić, Nontrivial Solutions to a Cubic Identity and the Factorization of n^2+n+1, arXiv:2508.14937 [math.GM], 2025. See Theorem 2 p. 4.
Programs
-
Magma
res := [];for n in [1..1000] do L := [ f[2] : f in Factorization(n) | f[1] mod 3 eq 1 ]; count := (#L eq 0) select 0 else &+L;if count gt 1 then Append(~res, n); end if; end for; res; // Vincenzo Librandi, Aug 24 2025
-
Mathematica
ff[{m_,n_}]:=Table[m,n];Select[Range[798],Count[Mod[ff/@FactorInteger[#]//Flatten,3],1]>1&] (* James C. McMahon, Aug 22 2025 *)
-
PARI
isok(k) = my(f=factor(k)); sum(i=1, #f~, if ((f[i,1]%3) == 1, f[i,2])) >= 2;