cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387238 Expansion of 1/((1-x) * (1-5*x))^(7/2).

Original entry on oeis.org

1, 21, 266, 2646, 22806, 178794, 1310694, 9140274, 61330269, 399107709, 2533330800, 15751925280, 96257031780, 579556206180, 3445117599480, 20252115155160, 117890464642335, 680320688005035, 3895668955041710, 22152779612619810, 125183331416173030
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-5*x))^(7/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-5*x))^(7/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1-5*x))^(7/2))
    

Formula

n*a(n) = (6*n+15)*a(n-1) - 5*(n+5)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 5^k * binomial(-7/2,k) * binomial(-7/2,n-k).
a(n) = Sum_{k=0..n} (-4)^k * binomial(-7/2,k) * binomial(n+6,n-k).
a(n) = Sum_{k=0..n} 4^k * 5^(n-k) * binomial(-7/2,k) * binomial(n+6,n-k).
a(n) = (binomial(n+6,3)/20) * A387239(n).
a(n) = (-1)^n * Sum_{k=0..n} 6^k * (5/6)^(n-k) * binomial(-7/2,k) * binomial(k,n-k).

A387280 Expansion of 1/((1-2*x) * (1-6*x))^(5/2).

Original entry on oeis.org

1, 20, 250, 2520, 22470, 185304, 1448580, 10895280, 79603590, 568642360, 3989693708, 27585223120, 188421602460, 1273887926640, 8537435428680, 56785445628768, 375214194393030, 2464893754074360, 16109413813808700, 104800627073105040, 678975482198143284, 4382524104695787600
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{x}, CoefficientList[Series[1/((3*x - 2)*4*x + 1)^(5/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-2*x)*(1-6*x))^(5/2))

Formula

n*a(n) = (8*n+12)*a(n-1) - 12*(n+3)*a(n-2) for n > 1.
a(n) = (-2)^n * Sum_{k=0..n} 3^k * binomial(-5/2,k) * binomial(-5/2,n-k).
a(n) = 2^n * Sum_{k=0..n} (-2)^k * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = Sum_{k=0..n} 4^k * 6^(n-k) * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = (binomial(n+4,2)/6) * A387272(n).
a(n) = (-1)^n * Sum_{k=0..n} 8^k * (3/2)^(n-k) * binomial(-5/2,k) * binomial(k,n-k).

A387283 Expansion of 1/((1-3*x) * (1-7*x))^(5/2).

Original entry on oeis.org

1, 25, 385, 4725, 50820, 501900, 4672920, 41685600, 360085935, 3033805775, 25058420387, 203669422775, 1633497471060, 12955708250100, 101784012971220, 793140294780900, 6136733150696295, 47186865239460975, 360841077902101335, 2745899433121042275, 20804106874715457216
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-3*x) * (1-7*x))^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    CoefficientList[Series[1/((1-3x)*(1-7*x))^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 27 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-3*x)*(1-7*x))^(5/2))
    

Formula

n*a(n) = (10*n+15)*a(n-1) - 21*(n+3)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 7^k * 3^(n-k) * binomial(-5/2,k) * binomial(-5/2,n-k).
a(n) = Sum_{k=0..n} (-4)^k * 3^(n-k) * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = Sum_{k=0..n} 4^k * 7^(n-k) * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = (binomial(n+4,2)/6) * A387275(n).
a(n) = (-1)^n * Sum_{k=0..n} 10^k * (21/10)^(n-k) * binomial(-5/2,k) * binomial(k,n-k).
Showing 1-3 of 3 results.