cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387273 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n+3,k+3) * binomial(2*k+6,k+6).

Original entry on oeis.org

1, 16, 165, 1400, 10661, 75936, 517524, 3420960, 22123530, 140782048, 885008839, 5511579528, 34073731965, 209428887360, 1281220578936, 7808422173120, 47440778110398, 287490594872160, 1738463164498410, 10493677382085744, 63245915436539682, 380697445274657984
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(n+3,k+3) * Binomial(2*k+6,k+6): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n+3,k+3]*Binomial[2*k+6,k+6],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(n+3, k+3)*binomial(2*k+6, k+6));
    

Formula

n*(n+6)*a(n) = (n+3) * (4*(2*n+5)*a(n-1) - 12*(n+2)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = [x^n] (1+4*x+x^2)^(n+3).
E.g.f.: exp(4*x) * BesselI(3, 2*x), with offset 3.

A387274 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n+4,k+4) * binomial(2*k+8,k+8).

Original entry on oeis.org

1, 20, 246, 2408, 20636, 162288, 1203000, 8546208, 58823919, 395245708, 2606333730, 16933021560, 108703640136, 691068080928, 4358220121296, 27301946599872, 170074452183570, 1054434358722024, 6510869338671852, 40063301434583504, 245781459952640040
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(n+4,k+4) * Binomial(2*k+8,k+8): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n+4,k+4]*Binomial[2*k+8,k+8],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(n+4, k+4)*binomial(2*k+8, k+8));
    

Formula

n*(n+8)*a(n) = (n+4) * (4*(2*n+7)*a(n-1) - 12*(n+3)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k) * binomial(n+4,n-2*k) * binomial(2*k+4,k).
a(n) = [x^n] (1+4*x+x^2)^(n+4).
E.g.f.: exp(4*x) * BesselI(4, 2*x), with offset 4.

A387280 Expansion of 1/((1-2*x) * (1-6*x))^(5/2).

Original entry on oeis.org

1, 20, 250, 2520, 22470, 185304, 1448580, 10895280, 79603590, 568642360, 3989693708, 27585223120, 188421602460, 1273887926640, 8537435428680, 56785445628768, 375214194393030, 2464893754074360, 16109413813808700, 104800627073105040, 678975482198143284, 4382524104695787600
Offset: 0

Views

Author

Seiichi Manyama, Aug 24 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{x}, CoefficientList[Series[1/((3*x - 2)*4*x + 1)^(5/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-2*x)*(1-6*x))^(5/2))

Formula

n*a(n) = (8*n+12)*a(n-1) - 12*(n+3)*a(n-2) for n > 1.
a(n) = (-2)^n * Sum_{k=0..n} 3^k * binomial(-5/2,k) * binomial(-5/2,n-k).
a(n) = 2^n * Sum_{k=0..n} (-2)^k * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = Sum_{k=0..n} 4^k * 6^(n-k) * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = (binomial(n+4,2)/6) * A387272(n).
a(n) = (-1)^n * Sum_{k=0..n} 8^k * (3/2)^(n-k) * binomial(-5/2,k) * binomial(k,n-k).
Showing 1-3 of 3 results.