A387305 Least k such that the Hamming weight (A000120) of n*k is prime.
3, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 19, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 19, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 9, 3, 1, 1, 1, 1, 7, 1, 5, 3, 1, 1, 3, 3, 1, 19, 1, 1, 67, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 5, 3, 1, 1, 1, 1, 5, 1, 5, 3
Offset: 1
Examples
a(1) = 3 because A000120(1) = 1 (not prime), A000120(2) = 1, and A000120(3) = 2 (prime). a(11) = 1 because A000120(11) = 3 (prime). a(15) = 19 since 15*19 = 285 and A000120(285) = 5 (prime); for 1 <= k < 19 the value A000120(15*k) is not prime.
Links
- Pablo Cadena-UrzĂșa, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
A387305[n_] := Module[{k = -1}, While[!PrimeQ[DigitSum[(k += 2)*n, 2]]]; k]; Array[A387305, 100] (* Paolo Xausa, Sep 02 2025 *)
-
PARI
a(n) = {my(k=1); while(!isprime(hammingweight(n*k)), k++); k}; vector(100, n, a(n)) \\ first 100 terms
-
Python
import sympy as sp def a(n, kmax=10**6): for k in range(1, kmax + 1): if sp.isprime((n*k).bit_count()): return k return None def A(N): return [a(n) for n in range(1, N + 1)]
Comments