A387397 Number of edges in the prime-intersection graph on the Boolean lattice of rank n.
0, 0, 0, 3, 28, 170, 866, 4025, 17704, 75108, 310812, 1263823, 5075104, 20198854, 79878696, 314426897, 1233391952, 4824992904, 18832070706, 73352680695, 285181117292, 1106813965234, 4288993897696, 16598629303781, 64176110700560, 247997873779100, 958343137325810
Offset: 0
Examples
For n=4, contributions are p=2: binomial(4,2)*(3^2-1)=48; p=3: binomial(4,3)*(3^1-1)=8; total (48+8)/2=28.
Links
- Pablo Cadena-Urzúa, Table of n, a(n) for n = 0..1000.
Programs
-
Mathematica
a[n_]:=Sum[Binomial[n,Prime[p]]*(3^(n-Prime[p])-1)/2,{p,PrimePi[n]}];Array[a,27,0] (* James C. McMahon, Sep 04 2025 *)
-
PARI
a(n) = {my(s=0); forprime(p=2,n,s+=binomial(n,p)*(3^(n-p)-1)); s/2};
-
Python
import sympy as sp def a(n): return sum(sp.binomial(n,p)*(3**(n-p)-1) for p in sp.primerange(0,n+1))//2
Formula
a(n) = (1/2) * Sum_{p prime, p <= n} binomial(n,p) * (3^(n-p) - 1).
E.g.f.: ((exp(3*z) - exp(z))/2) * (Sum_{p prime} z^p/p!).
a(n) ~ 2^(2n-1)/log(n/4).
Comments