cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387339 a(n) = Sum_{k=0..n} 3^k * binomial(n+2,k) * binomial(n+2,k+2).

Original entry on oeis.org

1, 12, 108, 880, 6855, 52164, 391720, 2918304, 21634290, 159880600, 1179180552, 8685874080, 63930198787, 470327654580, 3459353475600, 25442360389696, 187126561024686, 1376455855989672, 10126540146288520, 74515694338112160, 548444877468906726
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * Binomial(n+2,k) * Binomial(n+2,k+2): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    Table[Sum[3^k * Binomial[n+2,k]*Binomial[n+2, k+2],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(n+2, k)*binomial(n+2, k+2));
    

Formula

n*(n+4)*a(n) = (n+2) * (4*(2*n+3)*a(n-1) - 4*(n+1)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 3^k * 4^(n-2*k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = [x^n] (1+4*x+3*x^2)^(n+2).
E.g.f.: exp(4*x) * BesselI(2, 2*sqrt(3)*x) / 3, with offset 2.

A387344 Expansion of 1/(1 - 8*x + 4*x^2)^(7/2).

Original entry on oeis.org

1, 28, 490, 6888, 85134, 966504, 10329396, 105520272, 1040821782, 9982940968, 93584478988, 860746864432, 7790240975244, 69539700514704, 613370153844456, 5353909699803168, 46303471415495910, 397188087484393128, 3382162609845269404, 28610626973414978800
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Cf. A387340.

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/(1 - 8*x + 4*x^2)^(7/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
  • Mathematica
    CoefficientList[Series[1/(1-8*x+4*x^2)^(7/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-8*x+4*x^2)^(7/2))
    

Formula

n*a(n) = 4*(2*n+5)*a(n-1) - 4*(n+5)*a(n-2) for n > 1.
a(n) = (binomial(n+6,3)/20) * A387340(n).
a(n) = (-1)^n * Sum_{k=0..n} (1/2)^(n-4*k) * binomial(-7/2,k) * binomial(k,n-k).
Showing 1-2 of 2 results.