A387396 a(n) is the smallest positive number with a total of exactly n 2's in the decimal digits of its divisors.
1, 2, 12, 22, 72, 84, 168, 264, 252, 756, 504, 672, 1260, 1512, 2184, 2640, 2772, 2016, 2520, 4032, 5544, 5040, 6048, 6720, 7392, 13104, 12096, 16632, 10080, 15120, 18144, 21840, 33600, 25200, 34320, 22176, 20160, 34272, 30240, 42840, 45360, 36960, 50400, 52416, 55440, 94248, 65520, 66528, 60480
Offset: 0
Examples
a(3) = 22 because of the divisors of 22, 2 has one 2, 22 has two, for a total of 3, and 22 is the smallest number that works.
Links
- Robert Israel, Table of n, a(n) for n = 0..371
Programs
-
Maple
ff:= proc(n) option remember; numboccur(2, convert(n, base, 10)) end proc: f:= proc(n) local d; add(ff(d), d=numtheory:-divisors(n)) end proc: V:= Array(0..50): count:= 0: for x from 1 while count < 51 do v:= f(x); if v <= 50 and V[v] = 0 then V[v]:= x; count:= count+1; fi od: convert(V,list);
-
Mathematica
a[n_]:=Module[{k=1}, While[Count[IntegerDigits[Divisors[k]]//Flatten, 2]!=n, k++]; k]; Array[a, 49,0] (* Stefano Spezia, Aug 29 2025 *)
-
PARI
f(n) = sumdiv(n, d, #select(x->(x==2), digits(d))); \\ A387394 a(n) = my(k=1); while(f(k) !=n, k++); k; \\ Michel Marcus, Aug 28 2025
-
Python
from itertools import count, islice def f(n): return sum(str(d).count("2") for d in divisors(n, generator=True)) def agen(): # generator of terms n, adict = 0, dict() for k in count(1): v = f(k) if v not in adict: adict[v] = k while n in adict: yield adict[n]; n += 1 print(list(islice(agen(), 50))) # Michael S. Branicky, Aug 29 2025
Formula
A387394(a(n)) = n.
Comments