cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387402 a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n+2,k) * binomial(n+2,n-k), where i is the imaginary unit.

Original entry on oeis.org

1, 6, 32, 160, 780, 3752, 17920, 85248, 404640, 1918400, 9090048, 43064320, 204032192, 966887040, 4583424000, 21735350272, 103114538496, 489392157696, 2323701678080, 11037970513920, 52454251902976, 249373626208256, 1186024281341952, 5642924625100800, 26858183388774400, 127880625111662592
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(n+2,n-2*k) * Binomial(2*k+2,k): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n+2,n-2*k]*Binomial[2*k+2,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-k)*binomial(n+2, n-2*k)*binomial(2*k+2, k));
    

Formula

n*(n+4)*a(n) = (n+2) * (2*(2*n+3)*a(n-1) + 4*(n+1)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = [x^n] (1+2*x+2*x^2)^(n+2).
E.g.f.: exp(2*x) * BesselI(2, 2*sqrt(2)*x) / 2, with offset 2.