cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387406 Numbers k such that sigma(A253560(k)) / A253560(k) is equal to (sigma(k)+1) / k, where A253560(k) = k multiplied by its largest prime factor.

Original entry on oeis.org

6, 18, 28, 54, 117, 162, 196, 486, 496, 775, 1372, 1458, 1521, 4374, 8128, 9604, 13122, 15376, 19773, 24025, 39366, 67228, 88723, 118098, 257049, 354294, 470596, 476656, 744775, 796797, 1032256, 1062882, 2896363, 3188646, 3294172, 3341637, 6725201, 9565938, 12326221, 14776336, 23059204, 23088025, 25774633, 27237961
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2025

Keywords

Comments

Terms k for which sigma(k/A053585(k)) = A006530(k). This further entails that A001221(k) = 2 [See A023194].

Crossrefs

Subsequences: A000396 (even terms only), A240991 (conjectured, if true, then A000396 has only even terms).

Programs

  • Mathematica
    fk[k_]:=k*FactorInteger[k][[-1,1]];Select[Range[10^6],DivisorSigma[1,fk[#]]/fk[#]==(DivisorSigma[1,#]+1)/#&] (* James C. McMahon, Aug 31 2025 *)
  • PARI
    A253560(n) = if (n==1, 1, n*vecmax(factor(n)[, 1]));
    isA387406(n) = { my(x=A253560(n)); ((sigma(x)/x) == ((sigma(n)+1)/n)); };

A240991 Integers m such that A240923(m) = 1, where A240923(n) = numerator(sigma(n)/n) - sigma(denominator(sigma(n)/n)).

Original entry on oeis.org

6, 18, 28, 117, 162, 196, 496, 775, 1458, 8128, 9604, 13122, 15376, 19773, 24025, 88723, 118098, 257049, 470596, 744775, 796797, 1032256, 1062882, 2896363, 6725201, 9565938, 12326221, 14776336, 23059204, 25774633, 27237961, 33550336, 43441281, 63455131
Offset: 1

Views

Author

Michel Marcus, Aug 06 2014

Keywords

Comments

Perfect numbers (A000396) are a subsequence, since they satisfy sigma(m)/m = 2/1 = (sigma(1)+ 1)/1, that is of the form (sigma(d)+1)/d, with sigma being A000203.
Similarly, k-multiperfect numbers satisfy A240923(m) = k-1.
The analogous sequence of integers such that A240923(m) = 0 is A014567.
Holdener et al. say that these numbers have a quasi-friendly divisor and prove that such quasi-friendly divisors cannot have more than two distinct prime divisors. - Michel Marcus, Sep 08 2020, clarified by Antti Karttunen, Aug 31 2025
a(68) > 3.2*10^11. - Giovanni Resta, Aug 30 2025
Question: Might it possible to prove that for all n, A001221(a(n)) = 2, e.g., by showing that this is a subsequence of A387406? In any case, that holds for 67 initial terms. - Antti Karttunen, Aug 31 2025

Crossrefs

Cf. also A387405 (the least k whose quasi-friendly divisor a(n) is, or -1 if no such k exists).
Conjectured to be a subsequence of A387406.

Programs

  • Maple
    filter:= proc(n) uses numtheory; local r; r:= sigma(n)/n; numer(r) - sigma(denom(r)) = 1 end proc:
    select(filter, [$1..10^5]); # Robert Israel, Aug 07 2014
  • Mathematica
    a240923[n_Integer] :=
    Numerator[DivisorSigma[1, n]/n] -
      DivisorSigma[1, Denominator[DivisorSigma[1, n]/n]];
    a240991[n_Integer] := Flatten[Position[Thread[a240923[Range[n]]], 1]];
    a240991[1000000] (* Michael De Vlieger, Aug 06 2014 *)
Showing 1-2 of 2 results.