cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387482 a(n) = Sum_{k=0..floor(n/3)} 3^k * 2^(n-3*k) * binomial(k,n-3*k)^2.

Original entry on oeis.org

1, 0, 0, 3, 6, 0, 9, 72, 36, 27, 486, 972, 297, 2592, 11664, 10611, 13446, 97200, 195129, 149688, 663876, 2334987, 2838726, 4697676, 21485817, 43705008, 51438240, 171480483, 517850982, 760446144, 1440329769, 5065354440, 10479570372, 15691149819, 44973017478
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[3^k * 2^(n-3*k) * Binomial(k,n-3*k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[3^k* 2^(n-3*k)*Binomial[k,n-3*k]^2,{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 3^k*2^(n-3*k)*binomial(k, n-3*k)^2);
    

Formula

G.f.: 1/sqrt((1-3*x^3-6*x^4)^2 - 72*x^7).

A387481 a(n) = Sum_{k=0..floor(n/2)} 3^k * 2^(n-2*k) * binomial(k,n-2*k)^2.

Original entry on oeis.org

1, 0, 3, 6, 9, 72, 63, 486, 1053, 2808, 11907, 22518, 99225, 246888, 755487, 2554902, 6488829, 23112216, 63506835, 198653958, 623336553, 1781565192, 5807475711, 16898655942, 52699192029, 161995971384, 484990399395, 1525112887446, 4572778238649, 14184781485480, 43472894580063
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[3^k * 2^(n-2*k)* Binomial(k,n-2*k)^2: k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[3^k * 2^(n-2*k)*Binomial[k,n-2*k]^2,{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 3^k*2^(n-2*k)*binomial(k, n-2*k)^2);
    

Formula

G.f.: 1/sqrt((1-3*x^2-6*x^3)^2 - 72*x^5).

A387512 a(n) = Sum_{k=0..floor(n/3)} 2^k * 3^(n-2*k) * binomial(n-2*k,k)^2.

Original entry on oeis.org

1, 3, 9, 33, 153, 729, 3357, 15309, 70713, 331425, 1565325, 7418061, 35250633, 168030369, 803361645, 3850647741, 18495465561, 88998869313, 428955792525, 2070533412333, 10007606103273, 48428342800353, 234607598151597, 1137670448889501, 5521881103615737
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Cf. A387480.

Programs

  • Magma
    [(&+[2^k * 3^(n-2*k) * Binomial(n-2*k, k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[2^k*3^(n-2*k)*Binomial[n-2*k,k]^2,{k,0,Floor[n/3]}],{n,0,30}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^k*3^(n-2*k)*binomial(n-2*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-3*x-6*x^3)^2 - 72*x^4).
Showing 1-3 of 3 results.