A387483 a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(k,n-2*k)^2.
1, 0, 2, 4, 4, 32, 24, 144, 304, 576, 2336, 3648, 13120, 30208, 70528, 218368, 456448, 1360896, 3316224, 8311808, 23127040, 54812672, 151197696, 380669952, 978595840, 2613067776, 6540566528, 17464705024, 44764708864, 116183662592, 305637064704, 783627386880
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
Crossrefs
Cf. A298567.
Programs
-
Magma
[(&+[2^(n-k)* Binomial(k,n-2*k)^2: k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
-
Mathematica
Table[Sum[2^(n-k)*Binomial[k,n-2*k]^2,{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Sep 01 2025 *)
-
PARI
a(n) = sum(k=0, n\2, 2^(n-k)*binomial(k, n-2*k)^2);
Formula
G.f.: 1/sqrt((1-2*x^2-4*x^3)^2 - 32*x^5).