cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387489 Number of packing 1X1X2 bricks into 2X2Xn boxes considering packings obtained by rigid motions equivalent.

Original entry on oeis.org

1, 1, 2, 7, 26, 71, 258, 857, 3148, 11300, 41841, 154140, 573201, 2129726, 7935779, 29569762, 110281431, 411333271, 1534676318, 5726191937, 21367848168, 79738762725, 297573920356, 1110521036955, 4144432037026, 15467004104026, 57723125759179, 215424338586742, 803971544759711, 3000455162798396, 11197833423648453, 41790839930063492, 155965434740272813, 582070675232252525
Offset: 0

Views

Author

R. J. Mathar, Aug 31 2025

Keywords

Comments

There seem to be several typos in Jepsen's equations. The enumeration here is derived from the expression of p(n) as 1/8ths of Psi(e)+2*Psi(rho)+Psi(rho^2)+2*Psi(sigma)+2*Psi(rho*sigma) if n>=3.

Crossrefs

Cf. A109437 (is Jepsen's b(n)/4), A006253 (rigid motion symmetry ignored, Jepsen's a(n)).

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1 +x +2*x^2 -x^3*(-7 +16*x +57*x^2 -118*x^3 -38*x^4 +30*x^5 -53*x^6 +127*x^7 +42*x^8 -49*x^9 -7*x^10 +4*x^11) / ( (x-1)*(1+x) *(x^2+2*x-1) *(x^2+1) *(x^2-4*x+1) *(x^4-4*x^2+1)) )); // Vincenzo Librandi, Sep 02 2025
  • Mathematica
    CoefficientList[Series[1+x+2*x^2-x^3*(-7+16*x+57*x^2-118*x^3-38*x^4+30*x^5-53*x^6+127*x^7+42*x^8-49*x^9-7*x^10+4*x^11)/((x-1)*(1+x)*(x^2+2*x-1)*(x^2+1)*(x^2-4*x+1)*(x^4-4*x^2+1)),{x,0,33}],x] (* Vincenzo Librandi, Sep 02 2025 *)

Formula

G.f.: 1 +x +2*x^2 -x^3*(-7 +16*x +57*x^2 -118*x^3 -38*x^4 +30*x^5 -53*x^6 +127*x^7 +42*x^8 -49*x^9 -7*x^10 +4*x^11) / ( (x-1)*(1+x) *(x^2+2*x-1) *(x^2+1) *(x^2-4*x+1) *(x^4-4*x^2+1) ).