A387516 a(n) = Sum_{k=0..floor(n/3)} 2^(n-3*k) * binomial(k,n-3*k)^2.
1, 0, 0, 1, 2, 0, 1, 8, 4, 1, 18, 36, 9, 32, 144, 129, 66, 400, 801, 472, 932, 3201, 3698, 2916, 9865, 19728, 17248, 28225, 78690, 105536, 106625, 262408, 516388, 566785, 871730, 2064964, 3040713, 3585888, 7366032, 14098817, 17860962, 27066384, 56844833, 88593688
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
Programs
-
Magma
[(&+[2^(n-3*k) * Binomial(k,n-3*k)^2: k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
-
Mathematica
Table[Sum[2^(n-3*k)*Binomial[k,n-3*k]^2,{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Sep 01 2025 *)
-
PARI
a(n) = sum(k=0, n\3, 2^(n-3*k)*binomial(k, n-3*k)^2);
Formula
G.f.: 1/sqrt((1-x^3-2*x^4)^2 - 8*x^7).