A387602 a(n) = (1/2) * Sum_{k=0..floor(n/3)} 2^(n-2*k) * binomial(2*n-4*k+2,2*k+1).
1, 4, 12, 36, 120, 416, 1420, 4768, 15968, 53664, 180736, 608640, 2048336, 6891968, 23191104, 78044352, 262644608, 883866624, 2974400960, 10009502720, 33684265984, 113355412480, 381467226112, 1283724873728, 4320028764416, 14537889756160, 48923344206848
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1500
- Index entries for linear recurrences with constant coefficients, signature (4,-4,4,8,0,-4).
Programs
-
Magma
[&+[2^(n-2*k)* Binomial(2*n-4*k+2, 2*k+1)/2: k in [0..Floor (n/3)]]: n in [0..35]]; // Vincenzo Librandi, Sep 03 2025
-
Mathematica
Table[Sum[2^(n-2*k)*Binomial[2*n-4*k+2, 2*k+1]/2,{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Sep 03 2025 *)
-
PARI
a(n) = sum(k=0, n\3, 2^(n-2*k)*binomial(2*n-4*k+2, 2*k+1))/2;
Formula
G.f.: B(x)^2, where B(x) is the g.f. of A387510.
G.f.: 1/((1-2*x-2*x^3)^2 - 16*x^4).
a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) + 8*a(n-4) - 4*a(n-6).