cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387623 a(n) = Sum_{k=0..floor(n/4)} 2^k * binomial(2*n-6*k,2*k).

Original entry on oeis.org

1, 1, 1, 1, 3, 13, 31, 57, 95, 193, 463, 1081, 2295, 4609, 9423, 20185, 44071, 94801, 199807, 418921, 885879, 1889889, 4034639, 8573561, 18155399, 38461105, 81665695, 173627401, 368961431, 783201921, 1661811055, 3527298329, 7490519335, 15908549329, 33779968447
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, 2^k*binomial(2*n-6*k, 2*k));

Formula

G.f.: (1-x-2*x^4)/((1-x-2*x^4)^2 - 8*x^5).
a(n) = 2*a(n-1) - a(n-2) + 4*a(n-4) + 4*a(n-5) - 4*a(n-8).

A387627 a(n) = Sum_{k=0..floor(n/2)} 2^k * binomial(2*n-2*k+1,2*k+1).

Original entry on oeis.org

1, 3, 7, 27, 83, 263, 855, 2723, 8731, 27999, 89663, 287355, 920771, 2950263, 9453607, 30291667, 97062123, 311012623, 996563855, 3193247403, 10231988371, 32785923879, 105054547063, 336621829635, 1078623042491, 3456186066623, 11074510391007, 35485583833307
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^k* Binomial(2*n-2*k+1, 2*k+1): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
  • Mathematica
    Table[Sum[2^k*Binomial[2*n-2*k+1,2*k+1],{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Sep 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^k*binomial(2*n-2*k+1, 2*k+1));
    

Formula

G.f.: (1+x-2*x^2)/((1+x-2*x^2)^2 - 4*x).
a(n) = 2*a(n-1) + 3*a(n-2) + 4*a(n-3) - 4*a(n-4).

A387628 a(n) = Sum_{k=0..floor(n/3)} 2^k * binomial(2*n-4*k+1,2*k+1).

Original entry on oeis.org

1, 3, 5, 9, 29, 81, 185, 429, 1093, 2785, 6817, 16613, 41181, 102441, 253049, 623693, 1541557, 3814929, 9430545, 23297397, 57577997, 142345721, 351858985, 869614109, 2149341925, 5312698977, 13131636417, 32457015109, 80223121469, 198288112969, 490110342873
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^k* Binomial(2*n-4*k+1, 2*k+1): k in [0..Floor (n/3)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
  • Mathematica
    Table[Sum[2^k*Binomial[2*n-4*k+1,2*k+1],{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Sep 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^k*binomial(2*n-4*k+1, 2*k+1));
    

Formula

G.f.: (1+x-2*x^3)/((1+x-2*x^3)^2 - 4*x).
a(n) = 2*a(n-1) - a(n-2) + 4*a(n-3) + 4*a(n-4) - 4*a(n-6).
Showing 1-3 of 3 results.